Extensions 1→N→G→Q→1 with N=C9⋊Dic3 and Q=C2

Direct product G=N×Q with N=C9⋊Dic3 and Q=C2
dρLabelID
C2×C9⋊Dic3216C2xC9:Dic3216,69

Semidirect products G=N:Q with N=C9⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
C9⋊Dic31C2 = Dic3×D9φ: C2/C1C2 ⊆ Out C9⋊Dic3724-C9:Dic3:1C2216,27
C9⋊Dic32C2 = S3×Dic9φ: C2/C1C2 ⊆ Out C9⋊Dic3724-C9:Dic3:2C2216,30
C9⋊Dic33C2 = D6⋊D9φ: C2/C1C2 ⊆ Out C9⋊Dic3724-C9:Dic3:3C2216,31
C9⋊Dic34C2 = C6.D18φ: C2/C1C2 ⊆ Out C9⋊Dic3108C9:Dic3:4C2216,70
C9⋊Dic35C2 = C4×C9⋊S3φ: trivial image108C9:Dic3:5C2216,64

Non-split extensions G=N.Q with N=C9⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
C9⋊Dic3.1C2 = C9⋊Dic6φ: C2/C1C2 ⊆ Out C9⋊Dic3724-C9:Dic3.1C2216,26
C9⋊Dic3.2C2 = C12.D9φ: C2/C1C2 ⊆ Out C9⋊Dic3216C9:Dic3.2C2216,63

׿
×
𝔽