Extensions 1→N→G→Q→1 with N=D4xC13 and Q=C2

Direct product G=NxQ with N=D4xC13 and Q=C2
dρLabelID
D4xC26104D4xC26208,46

Semidirect products G=N:Q with N=D4xC13 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC13):1C2 = D4:D13φ: C2/C1C2 ⊆ Out D4xC131044+(D4xC13):1C2208,15
(D4xC13):2C2 = D4xD13φ: C2/C1C2 ⊆ Out D4xC13524+(D4xC13):2C2208,39
(D4xC13):3C2 = D4:2D13φ: C2/C1C2 ⊆ Out D4xC131044-(D4xC13):3C2208,40
(D4xC13):4C2 = C13xD8φ: C2/C1C2 ⊆ Out D4xC131042(D4xC13):4C2208,25
(D4xC13):5C2 = C13xC4oD4φ: trivial image1042(D4xC13):5C2208,48

Non-split extensions G=N.Q with N=D4xC13 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4xC13).1C2 = D4.D13φ: C2/C1C2 ⊆ Out D4xC131044-(D4xC13).1C2208,16
(D4xC13).2C2 = C13xSD16φ: C2/C1C2 ⊆ Out D4xC131042(D4xC13).2C2208,26

׿
x
:
Z
F
o
wr
Q
<