Extensions 1→N→G→Q→1 with N=D4×C13 and Q=C2

Direct product G=N×Q with N=D4×C13 and Q=C2
dρLabelID
D4×C26104D4xC26208,46

Semidirect products G=N:Q with N=D4×C13 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C13)⋊1C2 = D4⋊D13φ: C2/C1C2 ⊆ Out D4×C131044+(D4xC13):1C2208,15
(D4×C13)⋊2C2 = D4×D13φ: C2/C1C2 ⊆ Out D4×C13524+(D4xC13):2C2208,39
(D4×C13)⋊3C2 = D42D13φ: C2/C1C2 ⊆ Out D4×C131044-(D4xC13):3C2208,40
(D4×C13)⋊4C2 = C13×D8φ: C2/C1C2 ⊆ Out D4×C131042(D4xC13):4C2208,25
(D4×C13)⋊5C2 = C13×C4○D4φ: trivial image1042(D4xC13):5C2208,48

Non-split extensions G=N.Q with N=D4×C13 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C13).1C2 = D4.D13φ: C2/C1C2 ⊆ Out D4×C131044-(D4xC13).1C2208,16
(D4×C13).2C2 = C13×SD16φ: C2/C1C2 ⊆ Out D4×C131042(D4xC13).2C2208,26

׿
×
𝔽