Extensions 1→N→G→Q→1 with N=Q8×C13 and Q=C2

Direct product G=N×Q with N=Q8×C13 and Q=C2
dρLabelID
Q8×C26208Q8xC26208,47

Semidirect products G=N:Q with N=Q8×C13 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C13)⋊1C2 = Q8⋊D13φ: C2/C1C2 ⊆ Out Q8×C131044+(Q8xC13):1C2208,17
(Q8×C13)⋊2C2 = Q8×D13φ: C2/C1C2 ⊆ Out Q8×C131044-(Q8xC13):2C2208,41
(Q8×C13)⋊3C2 = D52⋊C2φ: C2/C1C2 ⊆ Out Q8×C131044+(Q8xC13):3C2208,42
(Q8×C13)⋊4C2 = C13×SD16φ: C2/C1C2 ⊆ Out Q8×C131042(Q8xC13):4C2208,26
(Q8×C13)⋊5C2 = C13×C4○D4φ: trivial image1042(Q8xC13):5C2208,48

Non-split extensions G=N.Q with N=Q8×C13 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C13).1C2 = C13⋊Q16φ: C2/C1C2 ⊆ Out Q8×C132084-(Q8xC13).1C2208,18
(Q8×C13).2C2 = C13×Q16φ: C2/C1C2 ⊆ Out Q8×C132082(Q8xC13).2C2208,27

׿
×
𝔽