Extensions 1→N→G→Q→1 with N=C132C8 and Q=C2

Direct product G=N×Q with N=C132C8 and Q=C2
dρLabelID
C2×C132C8208C2xC13:2C8208,9

Semidirect products G=N:Q with N=C132C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C132C81C2 = D4⋊D13φ: C2/C1C2 ⊆ Out C132C81044+C13:2C8:1C2208,15
C132C82C2 = D4.D13φ: C2/C1C2 ⊆ Out C132C81044-C13:2C8:2C2208,16
C132C83C2 = Q8⋊D13φ: C2/C1C2 ⊆ Out C132C81044+C13:2C8:3C2208,17
C132C84C2 = C8⋊D13φ: C2/C1C2 ⊆ Out C132C81042C13:2C8:4C2208,5
C132C85C2 = C52.4C4φ: C2/C1C2 ⊆ Out C132C81042C13:2C8:5C2208,10
C132C86C2 = C8×D13φ: trivial image1042C13:2C8:6C2208,4

Non-split extensions G=N.Q with N=C132C8 and Q=C2
extensionφ:Q→Out NdρLabelID
C132C8.1C2 = C13⋊Q16φ: C2/C1C2 ⊆ Out C132C82084-C13:2C8.1C2208,18
C132C8.2C2 = C13⋊C16φ: C2/C1C2 ⊆ Out C132C82084C13:2C8.2C2208,3

׿
×
𝔽