Extensions 1→N→G→Q→1 with N=C3 and Q=S3×Dic3

Direct product G=N×Q with N=C3 and Q=S3×Dic3
dρLabelID
C3×S3×Dic3244C3xS3xDic3216,119

Semidirect products G=N:Q with N=C3 and Q=S3×Dic3
extensionφ:Q→Aut NdρLabelID
C31(S3×Dic3) = Dic3×C3⋊S3φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C372C3:1(S3xDic3)216,125
C32(S3×Dic3) = C339(C2×C4)φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C3244C3:2(S3xDic3)216,131
C33(S3×Dic3) = S3×C3⋊Dic3φ: S3×Dic3/S3×C6C2 ⊆ Aut C372C3:3(S3xDic3)216,124

Non-split extensions G=N.Q with N=C3 and Q=S3×Dic3
extensionφ:Q→Aut NdρLabelID
C3.1(S3×Dic3) = Dic3×D9φ: S3×Dic3/C3×Dic3C2 ⊆ Aut C3724-C3.1(S3xDic3)216,27
C3.2(S3×Dic3) = C6.S32φ: S3×Dic3/C3⋊Dic3C2 ⊆ Aut C3366C3.2(S3xDic3)216,34
C3.3(S3×Dic3) = S3×Dic9φ: S3×Dic3/S3×C6C2 ⊆ Aut C3724-C3.3(S3xDic3)216,30

׿
×
𝔽