Extensions 1→N→G→Q→1 with N=C20 and Q=D5

Direct product G=N×Q with N=C20 and Q=D5
dρLabelID
D5×C20402D5xC20200,28

Semidirect products G=N:Q with N=C20 and Q=D5
extensionφ:Q→Aut NdρLabelID
C201D5 = C20⋊D5φ: D5/C5C2 ⊆ Aut C20100C20:1D5200,34
C202D5 = C4×C5⋊D5φ: D5/C5C2 ⊆ Aut C20100C20:2D5200,33
C203D5 = C5×D20φ: D5/C5C2 ⊆ Aut C20402C20:3D5200,29

Non-split extensions G=N.Q with N=C20 and Q=D5
extensionφ:Q→Aut NdρLabelID
C20.1D5 = Dic50φ: D5/C5C2 ⊆ Aut C202002-C20.1D5200,4
C20.2D5 = D100φ: D5/C5C2 ⊆ Aut C201002+C20.2D5200,6
C20.3D5 = C524Q8φ: D5/C5C2 ⊆ Aut C20200C20.3D5200,32
C20.4D5 = C252C8φ: D5/C5C2 ⊆ Aut C202002C20.4D5200,1
C20.5D5 = C4×D25φ: D5/C5C2 ⊆ Aut C201002C20.5D5200,5
C20.6D5 = C527C8φ: D5/C5C2 ⊆ Aut C20200C20.6D5200,16
C20.7D5 = C5×Dic10φ: D5/C5C2 ⊆ Aut C20402C20.7D5200,27
C20.8D5 = C5×C52C8central extension (φ=1)402C20.8D5200,15

׿
×
𝔽