Extensions 1→N→G→Q→1 with N=C3xC3:Dic3 and Q=C2

Direct product G=NxQ with N=C3xC3:Dic3 and Q=C2
dρLabelID
C6xC3:Dic372C6xC3:Dic3216,143

Semidirect products G=N:Q with N=C3xC3:Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC3:Dic3):1C2 = C3xS3xDic3φ: C2/C1C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3):1C2216,119
(C3xC3:Dic3):2C2 = C33:7D4φ: C2/C1C2 ⊆ Out C3xC3:Dic336(C3xC3:Dic3):2C2216,128
(C3xC3:Dic3):3C2 = C33:9D4φ: C2/C1C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3):3C2216,132
(C3xC3:Dic3):4C2 = S3xC3:Dic3φ: C2/C1C2 ⊆ Out C3xC3:Dic372(C3xC3:Dic3):4C2216,124
(C3xC3:Dic3):5C2 = C33:8(C2xC4)φ: C2/C1C2 ⊆ Out C3xC3:Dic336(C3xC3:Dic3):5C2216,126
(C3xC3:Dic3):6C2 = C33:9(C2xC4)φ: C2/C1C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3):6C2216,131
(C3xC3:Dic3):7C2 = C3xD6:S3φ: C2/C1C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3):7C2216,121
(C3xC3:Dic3):8C2 = C3xC32:7D4φ: C2/C1C2 ⊆ Out C3xC3:Dic336(C3xC3:Dic3):8C2216,144
(C3xC3:Dic3):9C2 = C12xC3:S3φ: trivial image72(C3xC3:Dic3):9C2216,141

Non-split extensions G=N.Q with N=C3xC3:Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC3:Dic3).1C2 = C3xC32:2C8φ: C2/C1C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3).1C2216,117
(C3xC3:Dic3).2C2 = C33:4Q8φ: C2/C1C2 ⊆ Out C3xC3:Dic372(C3xC3:Dic3).2C2216,130
(C3xC3:Dic3).3C2 = C33:5Q8φ: C2/C1C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3).3C2216,133
(C3xC3:Dic3).4C2 = C33:4C8φ: C2/C1C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3).4C2216,118
(C3xC3:Dic3).5C2 = C3xC32:2Q8φ: C2/C1C2 ⊆ Out C3xC3:Dic3244(C3xC3:Dic3).5C2216,123
(C3xC3:Dic3).6C2 = C3xC32:4Q8φ: C2/C1C2 ⊆ Out C3xC3:Dic372(C3xC3:Dic3).6C2216,140

׿
x
:
Z
F
o
wr
Q
<