Extensions 1→N→G→Q→1 with N=C3×C3⋊Dic3 and Q=C2

Direct product G=N×Q with N=C3×C3⋊Dic3 and Q=C2
dρLabelID
C6×C3⋊Dic372C6xC3:Dic3216,143

Semidirect products G=N:Q with N=C3×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C3⋊Dic3)⋊1C2 = C3×S3×Dic3φ: C2/C1C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3):1C2216,119
(C3×C3⋊Dic3)⋊2C2 = C337D4φ: C2/C1C2 ⊆ Out C3×C3⋊Dic336(C3xC3:Dic3):2C2216,128
(C3×C3⋊Dic3)⋊3C2 = C339D4φ: C2/C1C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3):3C2216,132
(C3×C3⋊Dic3)⋊4C2 = S3×C3⋊Dic3φ: C2/C1C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3):4C2216,124
(C3×C3⋊Dic3)⋊5C2 = C338(C2×C4)φ: C2/C1C2 ⊆ Out C3×C3⋊Dic336(C3xC3:Dic3):5C2216,126
(C3×C3⋊Dic3)⋊6C2 = C339(C2×C4)φ: C2/C1C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3):6C2216,131
(C3×C3⋊Dic3)⋊7C2 = C3×D6⋊S3φ: C2/C1C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3):7C2216,121
(C3×C3⋊Dic3)⋊8C2 = C3×C327D4φ: C2/C1C2 ⊆ Out C3×C3⋊Dic336(C3xC3:Dic3):8C2216,144
(C3×C3⋊Dic3)⋊9C2 = C12×C3⋊S3φ: trivial image72(C3xC3:Dic3):9C2216,141

Non-split extensions G=N.Q with N=C3×C3⋊Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C3⋊Dic3).1C2 = C3×C322C8φ: C2/C1C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).1C2216,117
(C3×C3⋊Dic3).2C2 = C334Q8φ: C2/C1C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).2C2216,130
(C3×C3⋊Dic3).3C2 = C335Q8φ: C2/C1C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).3C2216,133
(C3×C3⋊Dic3).4C2 = C334C8φ: C2/C1C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).4C2216,118
(C3×C3⋊Dic3).5C2 = C3×C322Q8φ: C2/C1C2 ⊆ Out C3×C3⋊Dic3244(C3xC3:Dic3).5C2216,123
(C3×C3⋊Dic3).6C2 = C3×C324Q8φ: C2/C1C2 ⊆ Out C3×C3⋊Dic372(C3xC3:Dic3).6C2216,140

׿
×
𝔽