Extensions 1→N→G→Q→1 with N=C3⋊Dic3 and Q=C6

Direct product G=N×Q with N=C3⋊Dic3 and Q=C6
dρLabelID
C6×C3⋊Dic372C6xC3:Dic3216,143

Semidirect products G=N:Q with N=C3⋊Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
C3⋊Dic3⋊C6 = He36D4φ: C6/C1C6 ⊆ Out C3⋊Dic3366C3:Dic3:C6216,60
C3⋊Dic32C6 = C4×C32⋊C6φ: C6/C2C3 ⊆ Out C3⋊Dic3366C3:Dic3:2C6216,50
C3⋊Dic33C6 = C2×C32⋊C12φ: C6/C2C3 ⊆ Out C3⋊Dic372C3:Dic3:3C6216,59
C3⋊Dic34C6 = C3×S3×Dic3φ: C6/C3C2 ⊆ Out C3⋊Dic3244C3:Dic3:4C6216,119
C3⋊Dic35C6 = C3×D6⋊S3φ: C6/C3C2 ⊆ Out C3⋊Dic3244C3:Dic3:5C6216,121
C3⋊Dic36C6 = C3×C327D4φ: C6/C3C2 ⊆ Out C3⋊Dic336C3:Dic3:6C6216,144
C3⋊Dic37C6 = C12×C3⋊S3φ: trivial image72C3:Dic3:7C6216,141

Non-split extensions G=N.Q with N=C3⋊Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
C3⋊Dic3.C6 = He33Q8φ: C6/C1C6 ⊆ Out C3⋊Dic3726-C3:Dic3.C6216,49
C3⋊Dic3.2C6 = C3×C322C8φ: C6/C3C2 ⊆ Out C3⋊Dic3244C3:Dic3.2C6216,117
C3⋊Dic3.3C6 = C3×C322Q8φ: C6/C3C2 ⊆ Out C3⋊Dic3244C3:Dic3.3C6216,123
C3⋊Dic3.4C6 = C3×C324Q8φ: C6/C3C2 ⊆ Out C3⋊Dic372C3:Dic3.4C6216,140

׿
×
𝔽