Extensions 1→N→G→Q→1 with N=C3×D4 and Q=D5

Direct product G=N×Q with N=C3×D4 and Q=D5
dρLabelID
C3×D4×D5604C3xD4xD5240,159

Semidirect products G=N:Q with N=C3×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1D5 = D4⋊D15φ: D5/C5C2 ⊆ Out C3×D41204+(C3xD4):1D5240,76
(C3×D4)⋊2D5 = D4×D15φ: D5/C5C2 ⊆ Out C3×D4604+(C3xD4):2D5240,179
(C3×D4)⋊3D5 = D42D15φ: D5/C5C2 ⊆ Out C3×D41204-(C3xD4):3D5240,180
(C3×D4)⋊4D5 = C3×D4⋊D5φ: D5/C5C2 ⊆ Out C3×D41204(C3xD4):4D5240,44
(C3×D4)⋊5D5 = C3×D42D5φ: trivial image1204(C3xD4):5D5240,160

Non-split extensions G=N.Q with N=C3×D4 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×D4).1D5 = D4.D15φ: D5/C5C2 ⊆ Out C3×D41204-(C3xD4).1D5240,77
(C3×D4).2D5 = C3×D4.D5φ: D5/C5C2 ⊆ Out C3×D41204(C3xD4).2D5240,45

׿
×
𝔽