Extensions 1→N→G→Q→1 with N=C5×D4 and Q=S3

Direct product G=N×Q with N=C5×D4 and Q=S3
dρLabelID
C5×S3×D4604C5xS3xD4240,169

Semidirect products G=N:Q with N=C5×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×D4)⋊1S3 = D4⋊D15φ: S3/C3C2 ⊆ Out C5×D41204+(C5xD4):1S3240,76
(C5×D4)⋊2S3 = D4×D15φ: S3/C3C2 ⊆ Out C5×D4604+(C5xD4):2S3240,179
(C5×D4)⋊3S3 = D42D15φ: S3/C3C2 ⊆ Out C5×D41204-(C5xD4):3S3240,180
(C5×D4)⋊4S3 = C5×D4⋊S3φ: S3/C3C2 ⊆ Out C5×D41204(C5xD4):4S3240,60
(C5×D4)⋊5S3 = C5×D42S3φ: trivial image1204(C5xD4):5S3240,170

Non-split extensions G=N.Q with N=C5×D4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×D4).1S3 = D4.D15φ: S3/C3C2 ⊆ Out C5×D41204-(C5xD4).1S3240,77
(C5×D4).2S3 = C5×D4.S3φ: S3/C3C2 ⊆ Out C5×D41204(C5xD4).2S3240,61

׿
×
𝔽