Extensions 1→N→G→Q→1 with N=C10 and Q=C3×D4

Direct product G=N×Q with N=C10 and Q=C3×D4
dρLabelID
D4×C30120D4xC30240,186

Semidirect products G=N:Q with N=C10 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C101(C3×D4) = C6×D20φ: C3×D4/C12C2 ⊆ Aut C10120C10:1(C3xD4)240,157
C102(C3×D4) = C6×C5⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C10120C10:2(C3xD4)240,164

Non-split extensions G=N.Q with N=C10 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C10.1(C3×D4) = C3×C40⋊C2φ: C3×D4/C12C2 ⊆ Aut C101202C10.1(C3xD4)240,35
C10.2(C3×D4) = C3×D40φ: C3×D4/C12C2 ⊆ Aut C101202C10.2(C3xD4)240,36
C10.3(C3×D4) = C3×Dic20φ: C3×D4/C12C2 ⊆ Aut C102402C10.3(C3xD4)240,37
C10.4(C3×D4) = C3×C4⋊Dic5φ: C3×D4/C12C2 ⊆ Aut C10240C10.4(C3xD4)240,42
C10.5(C3×D4) = C3×C10.D4φ: C3×D4/C2×C6C2 ⊆ Aut C10240C10.5(C3xD4)240,41
C10.6(C3×D4) = C3×D10⋊C4φ: C3×D4/C2×C6C2 ⊆ Aut C10120C10.6(C3xD4)240,43
C10.7(C3×D4) = C3×D4⋊D5φ: C3×D4/C2×C6C2 ⊆ Aut C101204C10.7(C3xD4)240,44
C10.8(C3×D4) = C3×D4.D5φ: C3×D4/C2×C6C2 ⊆ Aut C101204C10.8(C3xD4)240,45
C10.9(C3×D4) = C3×Q8⋊D5φ: C3×D4/C2×C6C2 ⊆ Aut C101204C10.9(C3xD4)240,46
C10.10(C3×D4) = C3×C5⋊Q16φ: C3×D4/C2×C6C2 ⊆ Aut C102404C10.10(C3xD4)240,47
C10.11(C3×D4) = C3×C23.D5φ: C3×D4/C2×C6C2 ⊆ Aut C10120C10.11(C3xD4)240,48
C10.12(C3×D4) = C15×C22⋊C4central extension (φ=1)120C10.12(C3xD4)240,82
C10.13(C3×D4) = C15×C4⋊C4central extension (φ=1)240C10.13(C3xD4)240,83
C10.14(C3×D4) = C15×D8central extension (φ=1)1202C10.14(C3xD4)240,86
C10.15(C3×D4) = C15×SD16central extension (φ=1)1202C10.15(C3xD4)240,87
C10.16(C3×D4) = C15×Q16central extension (φ=1)2402C10.16(C3xD4)240,88

׿
×
𝔽