Extensions 1→N→G→Q→1 with N=C4 and Q=S3×C10

Direct product G=N×Q with N=C4 and Q=S3×C10
dρLabelID
S3×C2×C20120S3xC2xC20240,166

Semidirect products G=N:Q with N=C4 and Q=S3×C10
extensionφ:Q→Aut NdρLabelID
C41(S3×C10) = C5×S3×D4φ: S3×C10/C5×S3C2 ⊆ Aut C4604C4:1(S3xC10)240,169
C42(S3×C10) = C10×D12φ: S3×C10/C30C2 ⊆ Aut C4120C4:2(S3xC10)240,167

Non-split extensions G=N.Q with N=C4 and Q=S3×C10
extensionφ:Q→Aut NdρLabelID
C4.1(S3×C10) = C5×D4⋊S3φ: S3×C10/C5×S3C2 ⊆ Aut C41204C4.1(S3xC10)240,60
C4.2(S3×C10) = C5×D4.S3φ: S3×C10/C5×S3C2 ⊆ Aut C41204C4.2(S3xC10)240,61
C4.3(S3×C10) = C5×Q82S3φ: S3×C10/C5×S3C2 ⊆ Aut C41204C4.3(S3xC10)240,62
C4.4(S3×C10) = C5×C3⋊Q16φ: S3×C10/C5×S3C2 ⊆ Aut C42404C4.4(S3xC10)240,63
C4.5(S3×C10) = C5×D42S3φ: S3×C10/C5×S3C2 ⊆ Aut C41204C4.5(S3xC10)240,170
C4.6(S3×C10) = C5×S3×Q8φ: S3×C10/C5×S3C2 ⊆ Aut C41204C4.6(S3xC10)240,171
C4.7(S3×C10) = C5×Q83S3φ: S3×C10/C5×S3C2 ⊆ Aut C41204C4.7(S3xC10)240,172
C4.8(S3×C10) = C5×C24⋊C2φ: S3×C10/C30C2 ⊆ Aut C41202C4.8(S3xC10)240,51
C4.9(S3×C10) = C5×D24φ: S3×C10/C30C2 ⊆ Aut C41202C4.9(S3xC10)240,52
C4.10(S3×C10) = C5×Dic12φ: S3×C10/C30C2 ⊆ Aut C42402C4.10(S3xC10)240,53
C4.11(S3×C10) = C10×Dic6φ: S3×C10/C30C2 ⊆ Aut C4240C4.11(S3xC10)240,165
C4.12(S3×C10) = S3×C40central extension (φ=1)1202C4.12(S3xC10)240,49
C4.13(S3×C10) = C5×C8⋊S3central extension (φ=1)1202C4.13(S3xC10)240,50
C4.14(S3×C10) = C10×C3⋊C8central extension (φ=1)240C4.14(S3xC10)240,54
C4.15(S3×C10) = C5×C4.Dic3central extension (φ=1)1202C4.15(S3xC10)240,55
C4.16(S3×C10) = C5×C4○D12central extension (φ=1)1202C4.16(S3xC10)240,168

׿
×
𝔽