Extensions 1→N→G→Q→1 with N=C7×Q16 and Q=C2

Direct product G=N×Q with N=C7×Q16 and Q=C2
dρLabelID
C14×Q16224C14xQ16224,169

Semidirect products G=N:Q with N=C7×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Q16)⋊1C2 = C7⋊SD32φ: C2/C1C2 ⊆ Out C7×Q161124+(C7xQ16):1C2224,34
(C7×Q16)⋊2C2 = D7×Q16φ: C2/C1C2 ⊆ Out C7×Q161124-(C7xQ16):2C2224,112
(C7×Q16)⋊3C2 = Q8.D14φ: C2/C1C2 ⊆ Out C7×Q161124+(C7xQ16):3C2224,114
(C7×Q16)⋊4C2 = Q16⋊D7φ: C2/C1C2 ⊆ Out C7×Q161124(C7xQ16):4C2224,113
(C7×Q16)⋊5C2 = C7×SD32φ: C2/C1C2 ⊆ Out C7×Q161122(C7xQ16):5C2224,61
(C7×Q16)⋊6C2 = C7×C8.C22φ: C2/C1C2 ⊆ Out C7×Q161124(C7xQ16):6C2224,172
(C7×Q16)⋊7C2 = C7×C4○D8φ: trivial image1122(C7xQ16):7C2224,170

Non-split extensions G=N.Q with N=C7×Q16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Q16).1C2 = C7⋊Q32φ: C2/C1C2 ⊆ Out C7×Q162244-(C7xQ16).1C2224,35
(C7×Q16).2C2 = C7×Q32φ: C2/C1C2 ⊆ Out C7×Q162242(C7xQ16).2C2224,62

׿
×
𝔽