Extensions 1→N→G→Q→1 with N=C56 and Q=C4

Direct product G=N×Q with N=C56 and Q=C4
dρLabelID
C4×C56224C4xC56224,45

Semidirect products G=N:Q with N=C56 and Q=C4
extensionφ:Q→Aut NdρLabelID
C561C4 = C561C4φ: C4/C2C2 ⊆ Aut C56224C56:1C4224,24
C562C4 = C8⋊Dic7φ: C4/C2C2 ⊆ Aut C56224C56:2C4224,23
C563C4 = C8×Dic7φ: C4/C2C2 ⊆ Aut C56224C56:3C4224,19
C564C4 = C56⋊C4φ: C4/C2C2 ⊆ Aut C56224C56:4C4224,21
C565C4 = C7×C2.D8φ: C4/C2C2 ⊆ Aut C56224C56:5C4224,56
C566C4 = C7×C4.Q8φ: C4/C2C2 ⊆ Aut C56224C56:6C4224,55
C567C4 = C7×C8⋊C4φ: C4/C2C2 ⊆ Aut C56224C56:7C4224,46

Non-split extensions G=N.Q with N=C56 and Q=C4
extensionφ:Q→Aut NdρLabelID
C56.1C4 = C56.C4φ: C4/C2C2 ⊆ Aut C561122C56.1C4224,25
C56.2C4 = C7⋊C32φ: C4/C2C2 ⊆ Aut C562242C56.2C4224,1
C56.3C4 = C2×C7⋊C16φ: C4/C2C2 ⊆ Aut C56224C56.3C4224,17
C56.4C4 = C28.C8φ: C4/C2C2 ⊆ Aut C561122C56.4C4224,18
C56.5C4 = C7×C8.C4φ: C4/C2C2 ⊆ Aut C561122C56.5C4224,57
C56.6C4 = C7×M5(2)φ: C4/C2C2 ⊆ Aut C561122C56.6C4224,59

׿
×
𝔽