Extensions 1→N→G→Q→1 with N=C2xC4 and Q=Dic7

Direct product G=NxQ with N=C2xC4 and Q=Dic7
dρLabelID
C2xC4xDic7224C2xC4xDic7224,117

Semidirect products G=N:Q with N=C2xC4 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
(C2xC4):Dic7 = C23:Dic7φ: Dic7/C7C4 ⊆ Aut C2xC4564(C2xC4):Dic7224,40
(C2xC4):2Dic7 = C14.C42φ: Dic7/C14C2 ⊆ Aut C2xC4224(C2xC4):2Dic7224,37
(C2xC4):3Dic7 = C2xC4:Dic7φ: Dic7/C14C2 ⊆ Aut C2xC4224(C2xC4):3Dic7224,120
(C2xC4):4Dic7 = C23.21D14φ: Dic7/C14C2 ⊆ Aut C2xC4112(C2xC4):4Dic7224,121

Non-split extensions G=N.Q with N=C2xC4 and Q=Dic7
extensionφ:Q→Aut NdρLabelID
(C2xC4).Dic7 = C28.10D4φ: Dic7/C7C4 ⊆ Aut C2xC41124(C2xC4).Dic7224,42
(C2xC4).2Dic7 = C42.D7φ: Dic7/C14C2 ⊆ Aut C2xC4224(C2xC4).2Dic7224,9
(C2xC4).3Dic7 = C28:C8φ: Dic7/C14C2 ⊆ Aut C2xC4224(C2xC4).3Dic7224,10
(C2xC4).4Dic7 = C28.55D4φ: Dic7/C14C2 ⊆ Aut C2xC4112(C2xC4).4Dic7224,36
(C2xC4).5Dic7 = C28.C8φ: Dic7/C14C2 ⊆ Aut C2xC41122(C2xC4).5Dic7224,18
(C2xC4).6Dic7 = C2xC4.Dic7φ: Dic7/C14C2 ⊆ Aut C2xC4112(C2xC4).6Dic7224,116
(C2xC4).7Dic7 = C4xC7:C8central extension (φ=1)224(C2xC4).7Dic7224,8
(C2xC4).8Dic7 = C2xC7:C16central extension (φ=1)224(C2xC4).8Dic7224,17
(C2xC4).9Dic7 = C22xC7:C8central extension (φ=1)224(C2xC4).9Dic7224,115

׿
x
:
Z
F
o
wr
Q
<