Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C10

Direct product G=NxQ with N=C2xDic3 and Q=C10
dρLabelID
Dic3xC2xC10240Dic3xC2xC10240,173

Semidirect products G=N:Q with N=C2xDic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xDic3):1C10 = C5xD6:C4φ: C10/C5C2 ⊆ Out C2xDic3120(C2xDic3):1C10240,59
(C2xDic3):2C10 = C5xC6.D4φ: C10/C5C2 ⊆ Out C2xDic3120(C2xDic3):2C10240,64
(C2xDic3):3C10 = C5xD4:2S3φ: C10/C5C2 ⊆ Out C2xDic31204(C2xDic3):3C10240,170
(C2xDic3):4C10 = C10xC3:D4φ: C10/C5C2 ⊆ Out C2xDic3120(C2xDic3):4C10240,174
(C2xDic3):5C10 = S3xC2xC20φ: trivial image120(C2xDic3):5C10240,166

Non-split extensions G=N.Q with N=C2xDic3 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2xDic3).1C10 = C5xDic3:C4φ: C10/C5C2 ⊆ Out C2xDic3240(C2xDic3).1C10240,57
(C2xDic3).2C10 = C5xC4:Dic3φ: C10/C5C2 ⊆ Out C2xDic3240(C2xDic3).2C10240,58
(C2xDic3).3C10 = C10xDic6φ: C10/C5C2 ⊆ Out C2xDic3240(C2xDic3).3C10240,165
(C2xDic3).4C10 = Dic3xC20φ: trivial image240(C2xDic3).4C10240,56

׿
x
:
Z
F
o
wr
Q
<