Extensions 1→N→G→Q→1 with N=C3.He3 and Q=C3

Direct product G=N×Q with N=C3.He3 and Q=C3
dρLabelID
C3×C3.He381C3xC3.He3243,54

Semidirect products G=N:Q with N=C3.He3 and Q=C3
extensionφ:Q→Out NdρLabelID
C3.He31C3 = C92⋊C3φ: C3/C1C3 ⊆ Out C3.He3273C3.He3:1C3243,25
C3.He32C3 = C32.He3φ: C3/C1C3 ⊆ Out C3.He3279C3.He3:2C3243,28
C3.He33C3 = C32.6He3φ: C3/C1C3 ⊆ Out C3.He3279C3.He3:3C3243,30
C3.He34C3 = C32.C33φ: C3/C1C3 ⊆ Out C3.He3279C3.He3:4C3243,59
C3.He35C3 = C9.2He3φ: C3/C1C3 ⊆ Out C3.He3279C3.He3:5C3243,60
C3.He36C3 = C9.He3φ: trivial image273C3.He3:6C3243,55

Non-split extensions G=N.Q with N=C3.He3 and Q=C3
extensionφ:Q→Out NdρLabelID
C3.He3.1C3 = C92.C3φ: C3/C1C3 ⊆ Out C3.He3273C3.He3.1C3243,27
C3.He3.2C3 = C32.5He3φ: C3/C1C3 ⊆ Out C3.He3279C3.He3.2C3243,29

׿
×
𝔽