Copied to
clipboard

G = C9.2He3order 243 = 35

2nd non-split extension by C9 of He3 acting via He3/C32=C3

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C9.2He3, He3.5C32, C32.10C33, C33.16C32, 3- 1+2.4C32, C3≀C32C3, C9○He32C3, He3.C32C3, C3.16(C3×He3), He3⋊C34C3, C3.He35C3, (C3×C9).15C32, (C3×3- 1+2)⋊10C3, SmallGroup(243,60)

Series: Derived Chief Lower central Upper central Jennings

C1C32 — C9.2He3
C1C3C32C3×C9C3×3- 1+2 — C9.2He3
C1C3C32 — C9.2He3
C1C3C3×C9 — C9.2He3
C1C3C32 — C9.2He3

Generators and relations for C9.2He3
 G = < a,b,c,d | a9=b3=c3=d3=1, bab-1=a7, ac=ca, dad-1=a4, bc=cb, dbd-1=a3bc-1, dcd-1=a6c >

Subgroups: 153 in 63 conjugacy classes, 33 normal (10 characteristic)
C1, C3, C3, C9, C9, C32, C32, C3×C9, C3×C9, He3, 3- 1+2, 3- 1+2, C33, C3≀C3, He3.C3, He3⋊C3, C3.He3, C3×3- 1+2, C9○He3, C9.2He3
Quotients: C1, C3, C32, He3, C33, C3×He3, C9.2He3

Permutation representations of C9.2He3
On 27 points - transitive group 27T103
Generators in S27
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 5 8)(3 9 6)(10 16 13)(12 15 18)(20 23 26)(21 27 24)
(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)
(1 20 14)(2 27 18)(3 25 13)(4 23 17)(5 21 12)(6 19 16)(7 26 11)(8 24 15)(9 22 10)

G:=sub<Sym(27)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,5,8)(3,9,6)(10,16,13)(12,15,18)(20,23,26)(21,27,24), (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,20,14)(2,27,18)(3,25,13)(4,23,17)(5,21,12)(6,19,16)(7,26,11)(8,24,15)(9,22,10)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,5,8)(3,9,6)(10,16,13)(12,15,18)(20,23,26)(21,27,24), (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24), (1,20,14)(2,27,18)(3,25,13)(4,23,17)(5,21,12)(6,19,16)(7,26,11)(8,24,15)(9,22,10) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,5,8),(3,9,6),(10,16,13),(12,15,18),(20,23,26),(21,27,24)], [(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24)], [(1,20,14),(2,27,18),(3,25,13),(4,23,17),(5,21,12),(6,19,16),(7,26,11),(8,24,15),(9,22,10)]])

G:=TransitiveGroup(27,103);

C9.2He3 is a maximal subgroup of   C3≀C3.C6

35 conjugacy classes

class 1 3A3B3C3D3E···3L9A···9F9G···9V
order133333···39···99···9
size111339···93···39···9

35 irreducible representations

dim111111139
type+
imageC1C3C3C3C3C3C3He3C9.2He3
kernelC9.2He3C3≀C3He3.C3He3⋊C3C3.He3C3×3- 1+2C9○He3C9C1
# reps166242662

Matrix representation of C9.2He3 in GL9(𝔽19)

010000000
001000000
700000000
0000110000
0000011000
000100000
01651455070
016162165007
1721416001100
,
100000000
0110000000
007000000
000100000
0000110000
000007000
1630250700
05140317010
2017160140011
,
100000000
010000000
001000000
000700000
000070000
000007000
14214141431100
14142314140110
21414143140011
,
000100000
000010000
000001000
165162214600
161651422060
516162142006
00000017175
00000051717
00000017517

G:=sub<GL(9,GF(19))| [0,0,7,0,0,0,0,0,17,1,0,0,0,0,0,16,16,2,0,1,0,0,0,0,5,16,14,0,0,0,0,0,1,14,2,16,0,0,0,11,0,0,5,16,0,0,0,0,0,11,0,5,5,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,7,0],[1,0,0,0,0,0,16,0,2,0,11,0,0,0,0,3,5,0,0,0,7,0,0,0,0,14,17,0,0,0,1,0,0,2,0,16,0,0,0,0,11,0,5,3,0,0,0,0,0,0,7,0,17,14,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11],[1,0,0,0,0,0,14,14,2,0,1,0,0,0,0,2,14,14,0,0,1,0,0,0,14,2,14,0,0,0,7,0,0,14,3,14,0,0,0,0,7,0,14,14,3,0,0,0,0,0,7,3,14,14,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11],[0,0,0,16,16,5,0,0,0,0,0,0,5,16,16,0,0,0,0,0,0,16,5,16,0,0,0,1,0,0,2,14,2,0,0,0,0,1,0,2,2,14,0,0,0,0,0,1,14,2,2,0,0,0,0,0,0,6,0,0,17,5,17,0,0,0,0,6,0,17,17,5,0,0,0,0,0,6,5,17,17] >;

C9.2He3 in GAP, Magma, Sage, TeX

C_9._2{\rm He}_3
% in TeX

G:=Group("C9.2He3");
// GroupNames label

G:=SmallGroup(243,60);
// by ID

G=gap.SmallGroup(243,60);
# by ID

G:=PCGroup([5,-3,3,3,-3,-3,301,457,147,2163]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^3=c^3=d^3=1,b*a*b^-1=a^7,a*c=c*a,d*a*d^-1=a^4,b*c=c*b,d*b*d^-1=a^3*b*c^-1,d*c*d^-1=a^6*c>;
// generators/relations

׿
×
𝔽