Extensions 1→N→G→Q→1 with N=C68 and Q=C4

Direct product G=N×Q with N=C68 and Q=C4
dρLabelID
C4×C68272C4xC68272,20

Semidirect products G=N:Q with N=C68 and Q=C4
extensionφ:Q→Aut NdρLabelID
C681C4 = C68⋊C4φ: C4/C1C4 ⊆ Aut C68684C68:1C4272,32
C682C4 = C4×C17⋊C4φ: C4/C1C4 ⊆ Aut C68684C68:2C4272,31
C683C4 = C683C4φ: C4/C2C2 ⊆ Aut C68272C68:3C4272,13
C684C4 = C4×Dic17φ: C4/C2C2 ⊆ Aut C68272C68:4C4272,11
C685C4 = C4⋊C4×C17φ: C4/C2C2 ⊆ Aut C68272C68:5C4272,22

Non-split extensions G=N.Q with N=C68 and Q=C4
extensionφ:Q→Aut NdρLabelID
C68.1C4 = D34.4C4φ: C4/C1C4 ⊆ Aut C681364C68.1C4272,30
C68.2C4 = C173C16φ: C4/C1C4 ⊆ Aut C682724C68.2C4272,3
C68.3C4 = C68.C4φ: C4/C1C4 ⊆ Aut C681364C68.3C4272,29
C68.4C4 = C68.4C4φ: C4/C2C2 ⊆ Aut C681362C68.4C4272,10
C68.5C4 = C174C16φ: C4/C2C2 ⊆ Aut C682722C68.5C4272,1
C68.6C4 = C2×C173C8φ: C4/C2C2 ⊆ Aut C68272C68.6C4272,9
C68.7C4 = M4(2)×C17φ: C4/C2C2 ⊆ Aut C681362C68.7C4272,24

׿
×
𝔽