Extensions 1→N→G→Q→1 with N=C10 and Q=C2×C14

Direct product G=N×Q with N=C10 and Q=C2×C14
dρLabelID
C22×C70280C2^2xC70280,40

Semidirect products G=N:Q with N=C10 and Q=C2×C14
extensionφ:Q→Aut NdρLabelID
C10⋊(C2×C14) = D5×C2×C14φ: C2×C14/C14C2 ⊆ Aut C10140C10:(C2xC14)280,38

Non-split extensions G=N.Q with N=C10 and Q=C2×C14
extensionφ:Q→Aut NdρLabelID
C10.1(C2×C14) = C7×Dic10φ: C2×C14/C14C2 ⊆ Aut C102802C10.1(C2xC14)280,19
C10.2(C2×C14) = D5×C28φ: C2×C14/C14C2 ⊆ Aut C101402C10.2(C2xC14)280,20
C10.3(C2×C14) = C7×D20φ: C2×C14/C14C2 ⊆ Aut C101402C10.3(C2xC14)280,21
C10.4(C2×C14) = C14×Dic5φ: C2×C14/C14C2 ⊆ Aut C10280C10.4(C2xC14)280,22
C10.5(C2×C14) = C7×C5⋊D4φ: C2×C14/C14C2 ⊆ Aut C101402C10.5(C2xC14)280,23
C10.6(C2×C14) = D4×C35central extension (φ=1)1402C10.6(C2xC14)280,30
C10.7(C2×C14) = Q8×C35central extension (φ=1)2802C10.7(C2xC14)280,31

׿
×
𝔽