Copied to
clipboard

G = (C4xC12):S3order 288 = 25·32

1st semidirect product of C4xC12 and S3 acting faithfully

non-abelian, soluble, monomial

Aliases: (C4xC12):1S3, C3:(C42:S3), C42:(C3:S3), C42:C3:2S3, (C2xC6).3S4, C22.(C3:S4), (C3xC42:C3):4C2, SmallGroup(288,401)

Series: Derived Chief Lower central Upper central

C1C42C3xC42:C3 — (C4xC12):S3
C1C22C42C4xC12C3xC42:C3 — (C4xC12):S3
C3xC42:C3 — (C4xC12):S3
C1

Generators and relations for (C4xC12):S3
 G = < a,b,c,d | a4=b12=c3=d2=1, ab=ba, cac-1=dad=b9, cbc-1=a-1b7, dbd=ab8, dcd=c-1 >

Subgroups: 552 in 60 conjugacy classes, 11 normal (8 characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, C6, C8, C2xC4, D4, Q8, C32, Dic3, C12, A4, D6, C2xC6, C42, M4(2), C4oD4, C3:S3, C3:C8, Dic6, C4xS3, D12, C3:D4, C2xC12, S4, C4wrC2, C3xA4, C42:C3, C4.Dic3, C4xC12, C4oD12, C3:S4, C42:4S3, C42:S3, C3xC42:C3, (C4xC12):S3
Quotients: C1, C2, S3, C3:S3, S4, C3:S4, C42:S3, (C4xC12):S3

Character table of (C4xC12):S3

 class 12A2B3A3B3C3D4A4B4C4D68A8B12A12B12C12D
 size 1336232323233636636366666
ρ1111111111111111111    trivial
ρ211-11111111-11-1-11111    linear of order 2
ρ3220-12-1-12220-100-1-1-1-1    orthogonal lifted from S3
ρ42202-1-1-122202002222    orthogonal lifted from S3
ρ5220-1-12-12220-100-1-1-1-1    orthogonal lifted from S3
ρ6220-1-1-122220-100-1-1-1-1    orthogonal lifted from S3
ρ733-13000-1-1-1-1311-1-1-1-1    orthogonal lifted from S4
ρ83313000-1-1-113-1-1-1-1-1-1    orthogonal lifted from S4
ρ93-1-13000-1-2i-1+2i11-1-ii-1+2i-1-2i11    complex lifted from C42:S3
ρ103-1-13000-1+2i-1-2i11-1i-i-1-2i-1+2i11    complex lifted from C42:S3
ρ113-113000-1-2i-1+2i1-1-1i-i-1+2i-1-2i11    complex lifted from C42:S3
ρ123-113000-1+2i-1-2i1-1-1-ii-1-2i-1+2i11    complex lifted from C42:S3
ρ136-20600022-20-20022-2-2    orthogonal lifted from C42:S3
ρ14660-3000-2-2-20-3001111    orthogonal lifted from C3:S4
ρ156-20-300022-20100-1-11+231-23    orthogonal faithful
ρ166-20-300022-20100-1-11-231+23    orthogonal faithful
ρ176-20-3000-2+4i-2-4i201001+2i1-2i-1-1    complex faithful
ρ186-20-3000-2-4i-2+4i201001-2i1+2i-1-1    complex faithful

Smallest permutation representation of (C4xC12):S3
On 36 points
Generators in S36
(1 7 10 6)(2 8 11 4)(3 9 12 5)(25 28 31 34)(26 29 32 35)(27 30 33 36)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)
(1 21 30)(2 13 34)(3 17 26)(4 22 25)(5 14 29)(6 18 33)(7 24 27)(8 16 31)(9 20 35)(10 15 36)(11 19 28)(12 23 32)
(1 20)(2 16)(3 24)(4 19)(5 15)(6 23)(7 17)(8 13)(9 21)(10 14)(11 22)(12 18)(25 28)(26 27)(29 36)(30 35)(31 34)(32 33)

G:=sub<Sym(36)| (1,7,10,6)(2,8,11,4)(3,9,12,5)(25,28,31,34)(26,29,32,35)(27,30,33,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,21,30)(2,13,34)(3,17,26)(4,22,25)(5,14,29)(6,18,33)(7,24,27)(8,16,31)(9,20,35)(10,15,36)(11,19,28)(12,23,32), (1,20)(2,16)(3,24)(4,19)(5,15)(6,23)(7,17)(8,13)(9,21)(10,14)(11,22)(12,18)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33)>;

G:=Group( (1,7,10,6)(2,8,11,4)(3,9,12,5)(25,28,31,34)(26,29,32,35)(27,30,33,36), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36), (1,21,30)(2,13,34)(3,17,26)(4,22,25)(5,14,29)(6,18,33)(7,24,27)(8,16,31)(9,20,35)(10,15,36)(11,19,28)(12,23,32), (1,20)(2,16)(3,24)(4,19)(5,15)(6,23)(7,17)(8,13)(9,21)(10,14)(11,22)(12,18)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33) );

G=PermutationGroup([[(1,7,10,6),(2,8,11,4),(3,9,12,5),(25,28,31,34),(26,29,32,35),(27,30,33,36)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)], [(1,21,30),(2,13,34),(3,17,26),(4,22,25),(5,14,29),(6,18,33),(7,24,27),(8,16,31),(9,20,35),(10,15,36),(11,19,28),(12,23,32)], [(1,20),(2,16),(3,24),(4,19),(5,15),(6,23),(7,17),(8,13),(9,21),(10,14),(11,22),(12,18),(25,28),(26,27),(29,36),(30,35),(31,34),(32,33)]])

Matrix representation of (C4xC12):S3 in GL5(F73)

10000
01000
0072046
000460
000046
,
721000
720000
0046027
0004627
000072
,
10000
01000
0007247
00727247
000451
,
01000
10000
007200
00727247
004501

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,46,0,0,0,46,0,46],[72,72,0,0,0,1,0,0,0,0,0,0,46,0,0,0,0,0,46,0,0,0,27,27,72],[1,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,72,72,45,0,0,47,47,1],[0,1,0,0,0,1,0,0,0,0,0,0,72,72,45,0,0,0,72,0,0,0,0,47,1] >;

(C4xC12):S3 in GAP, Magma, Sage, TeX

(C_4\times C_{12})\rtimes S_3
% in TeX

G:=Group("(C4xC12):S3");
// GroupNames label

G:=SmallGroup(288,401);
// by ID

G=gap.SmallGroup(288,401);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,57,254,1011,514,360,634,3476,102,9077,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^12=c^3=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=b^9,c*b*c^-1=a^-1*b^7,d*b*d=a*b^8,d*c*d=c^-1>;
// generators/relations

Export

Character table of (C4xC12):S3 in TeX

׿
x
:
Z
F
o
wr
Q
<