Aliases: (C6×C12)⋊1C4, C62.2(C2×C4), C62⋊C4⋊2C2, C32⋊2(C23⋊C4), C2.4(C62⋊C4), (C2×C4)⋊(C32⋊C4), (C22×C3⋊S3)⋊3C4, (C2×C3⋊S3).13D4, (C2×C12⋊S3).2C2, C22.2(C2×C32⋊C4), (C3×C6).12(C22⋊C4), (C22×C3⋊S3).4C22, SmallGroup(288,422)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C2×C3⋊S3 — C22×C3⋊S3 — C62⋊C4 — (C6×C12)⋊C4 |
Generators and relations for (C6×C12)⋊C4
G = < a,b,c | a6=b12=c4=1, ab=ba, cac-1=a-1b2, cbc-1=a-1b7 >
Subgroups: 792 in 106 conjugacy classes, 16 normal (12 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, C2×C4, D4, C23, C32, C12, D6, C2×C6, C22⋊C4, C2×D4, C3⋊S3, C3×C6, C3×C6, D12, C2×C12, C22×S3, C23⋊C4, C3×C12, C32⋊C4, C2×C3⋊S3, C2×C3⋊S3, C62, C2×D12, C12⋊S3, C6×C12, C2×C32⋊C4, C22×C3⋊S3, C62⋊C4, C2×C12⋊S3, (C6×C12)⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, C23⋊C4, C32⋊C4, C2×C32⋊C4, C62⋊C4, (C6×C12)⋊C4
Character table of (C6×C12)⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 2 | 18 | 18 | 36 | 4 | 4 | 4 | 36 | 36 | 36 | 36 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | -2 | 2 | 3 | 0 | -3 | 0 | 0 | 3 | -3 | 0 | orthogonal lifted from C62⋊C4 |
ρ12 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | 1 | -4 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | -2 | -2 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | 2 | orthogonal lifted from C2×C32⋊C4 |
ρ13 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ14 | 4 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -2 | 1 | -1 | 0 | 3 | 0 | -3 | -3 | 0 | 0 | 3 | orthogonal lifted from C62⋊C4 |
ρ15 | 4 | 4 | -4 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -2 | 1 | -1 | 0 | -3 | 0 | 3 | 3 | 0 | 0 | -3 | orthogonal lifted from C62⋊C4 |
ρ16 | 4 | 4 | -4 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 2 | 1 | -2 | 2 | -3 | 0 | 3 | 0 | 0 | -3 | 3 | 0 | orthogonal lifted from C62⋊C4 |
ρ17 | 4 | 4 | 4 | 0 | 0 | 0 | -2 | 1 | 4 | 0 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | -2 | -2 | 1 | -2 | 1 | -2 | -2 | 1 | 1 | -2 | orthogonal lifted from C32⋊C4 |
ρ18 | 4 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 1 | 2 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | orthogonal lifted from C2×C32⋊C4 |
ρ19 | 4 | 4 | 4 | 0 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | -2 | -2 | 1 | orthogonal lifted from C32⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | -3 | 0 | -1 | 2 | 0 | -√3 | 2√3 | -√3 | 0 | 0 | √3 | √3 | -2√3 | orthogonal faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 2 | -1 | 3 | 0 | √3 | 2√3 | √3 | -√3 | 0 | -2√3 | -√3 | orthogonal faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -3 | 3 | 0 | -1 | 2 | 0 | -√3 | 0 | √3 | -2√3 | 2√3 | √3 | -√3 | 0 | orthogonal faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 2 | -1 | 3 | 0 | -√3 | -2√3 | -√3 | √3 | 0 | 2√3 | √3 | orthogonal faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -3 | 3 | 0 | -1 | 2 | 0 | √3 | 0 | -√3 | 2√3 | -2√3 | -√3 | √3 | 0 | orthogonal faithful |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | -1 | -3 | -2√3 | -√3 | 0 | √3 | -√3 | 2√3 | 0 | √3 | orthogonal faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 2 | -1 | -3 | 2√3 | √3 | 0 | -√3 | √3 | -2√3 | 0 | -√3 | orthogonal faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | -3 | 0 | -1 | 2 | 0 | √3 | -2√3 | √3 | 0 | 0 | -√3 | -√3 | 2√3 | orthogonal faithful |
(13 15 17 19 21 23)(14 16 18 20 22 24)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 22)(2 17 12 15)(3 24 11 20)(4 19 10 13)(5 14 9 18)(6 21 8 23)(7 16)
G:=sub<Sym(24)| (13,15,17,19,21,23)(14,16,18,20,22,24), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,22)(2,17,12,15)(3,24,11,20)(4,19,10,13)(5,14,9,18)(6,21,8,23)(7,16)>;
G:=Group( (13,15,17,19,21,23)(14,16,18,20,22,24), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,22)(2,17,12,15)(3,24,11,20)(4,19,10,13)(5,14,9,18)(6,21,8,23)(7,16) );
G=PermutationGroup([[(13,15,17,19,21,23),(14,16,18,20,22,24)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,22),(2,17,12,15),(3,24,11,20),(4,19,10,13),(5,14,9,18),(6,21,8,23),(7,16)]])
G:=TransitiveGroup(24,622);
(1 10 7 3 12 5)(2 11 8 4 9 6)(13 17 21)(14 18 22)(15 19 23)(16 20 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 18 4 21)(2 15 3 24)(5 16 9 23)(6 13 12 14)(7 22 11 17)(8 19 10 20)
G:=sub<Sym(24)| (1,10,7,3,12,5)(2,11,8,4,9,6)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,18,4,21)(2,15,3,24)(5,16,9,23)(6,13,12,14)(7,22,11,17)(8,19,10,20)>;
G:=Group( (1,10,7,3,12,5)(2,11,8,4,9,6)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,18,4,21)(2,15,3,24)(5,16,9,23)(6,13,12,14)(7,22,11,17)(8,19,10,20) );
G=PermutationGroup([[(1,10,7,3,12,5),(2,11,8,4,9,6),(13,17,21),(14,18,22),(15,19,23),(16,20,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,18,4,21),(2,15,3,24),(5,16,9,23),(6,13,12,14),(7,22,11,17),(8,19,10,20)]])
G:=TransitiveGroup(24,623);
Matrix representation of (C6×C12)⋊C4 ►in GL4(𝔽13) generated by
0 | 12 | 0 | 0 |
1 | 12 | 0 | 0 |
11 | 8 | 12 | 0 |
11 | 8 | 0 | 12 |
10 | 10 | 0 | 0 |
3 | 7 | 0 | 0 |
9 | 3 | 7 | 10 |
3 | 1 | 3 | 10 |
0 | 0 | 12 | 1 |
2 | 5 | 11 | 12 |
9 | 7 | 9 | 12 |
2 | 4 | 9 | 12 |
G:=sub<GL(4,GF(13))| [0,1,11,11,12,12,8,8,0,0,12,0,0,0,0,12],[10,3,9,3,10,7,3,1,0,0,7,3,0,0,10,10],[0,2,9,2,0,5,7,4,12,11,9,9,1,12,12,12] >;
(C6×C12)⋊C4 in GAP, Magma, Sage, TeX
(C_6\times C_{12})\rtimes C_4
% in TeX
G:=Group("(C6xC12):C4");
// GroupNames label
G:=SmallGroup(288,422);
// by ID
G=gap.SmallGroup(288,422);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,141,120,219,675,9413,691,12550,2372]);
// Polycyclic
G:=Group<a,b,c|a^6=b^12=c^4=1,a*b=b*a,c*a*c^-1=a^-1*b^2,c*b*c^-1=a^-1*b^7>;
// generators/relations
Export