Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C36

Direct product G=N×Q with N=C4 and Q=C2×C36
dρLabelID
C2×C4×C36288C2xC4xC36288,164

Semidirect products G=N:Q with N=C4 and Q=C2×C36
extensionφ:Q→Aut NdρLabelID
C41(C2×C36) = D4×C36φ: C2×C36/C36C2 ⊆ Aut C4144C4:1(C2xC36)288,168
C42(C2×C36) = C4⋊C4×C18φ: C2×C36/C2×C18C2 ⊆ Aut C4288C4:2(C2xC36)288,166

Non-split extensions G=N.Q with N=C4 and Q=C2×C36
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C36) = C9×D4⋊C4φ: C2×C36/C36C2 ⊆ Aut C4144C4.1(C2xC36)288,52
C4.2(C2×C36) = C9×Q8⋊C4φ: C2×C36/C36C2 ⊆ Aut C4288C4.2(C2xC36)288,53
C4.3(C2×C36) = C9×C4≀C2φ: C2×C36/C36C2 ⊆ Aut C4722C4.3(C2xC36)288,54
C4.4(C2×C36) = Q8×C36φ: C2×C36/C36C2 ⊆ Aut C4288C4.4(C2xC36)288,169
C4.5(C2×C36) = C9×C8○D4φ: C2×C36/C36C2 ⊆ Aut C41442C4.5(C2xC36)288,181
C4.6(C2×C36) = C9×C4.Q8φ: C2×C36/C2×C18C2 ⊆ Aut C4288C4.6(C2xC36)288,56
C4.7(C2×C36) = C9×C2.D8φ: C2×C36/C2×C18C2 ⊆ Aut C4288C4.7(C2xC36)288,57
C4.8(C2×C36) = C9×C8.C4φ: C2×C36/C2×C18C2 ⊆ Aut C41442C4.8(C2xC36)288,58
C4.9(C2×C36) = M4(2)×C18φ: C2×C36/C2×C18C2 ⊆ Aut C4144C4.9(C2xC36)288,180
C4.10(C2×C36) = C9×C8⋊C4central extension (φ=1)288C4.10(C2xC36)288,47
C4.11(C2×C36) = C9×M5(2)central extension (φ=1)1442C4.11(C2xC36)288,60
C4.12(C2×C36) = C9×C42⋊C2central extension (φ=1)144C4.12(C2xC36)288,167

׿
×
𝔽