Extensions 1→N→G→Q→1 with N=C2×C8 and Q=C3×C6

Direct product G=N×Q with N=C2×C8 and Q=C3×C6
dρLabelID
C2×C6×C24288C2xC6xC24288,826

Semidirect products G=N:Q with N=C2×C8 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
(C2×C8)⋊1(C3×C6) = C32×C22⋊C8φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8):1(C3xC6)288,316
(C2×C8)⋊2(C3×C6) = C32×D4⋊C4φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8):2(C3xC6)288,320
(C2×C8)⋊3(C3×C6) = D8×C3×C6φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8):3(C3xC6)288,829
(C2×C8)⋊4(C3×C6) = C32×C4○D8φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8):4(C3xC6)288,832
(C2×C8)⋊5(C3×C6) = SD16×C3×C6φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8):5(C3xC6)288,830
(C2×C8)⋊6(C3×C6) = M4(2)×C3×C6φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8):6(C3xC6)288,827
(C2×C8)⋊7(C3×C6) = C32×C8○D4φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8):7(C3xC6)288,828

Non-split extensions G=N.Q with N=C2×C8 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
(C2×C8).1(C3×C6) = C32×Q8⋊C4φ: C3×C6/C32C2 ⊆ Aut C2×C8288(C2xC8).1(C3xC6)288,321
(C2×C8).2(C3×C6) = C32×C4⋊C8φ: C3×C6/C32C2 ⊆ Aut C2×C8288(C2xC8).2(C3xC6)288,323
(C2×C8).3(C3×C6) = C32×C2.D8φ: C3×C6/C32C2 ⊆ Aut C2×C8288(C2xC8).3(C3xC6)288,325
(C2×C8).4(C3×C6) = Q16×C3×C6φ: C3×C6/C32C2 ⊆ Aut C2×C8288(C2xC8).4(C3xC6)288,831
(C2×C8).5(C3×C6) = C32×C8.C4φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8).5(C3xC6)288,326
(C2×C8).6(C3×C6) = C32×C4.Q8φ: C3×C6/C32C2 ⊆ Aut C2×C8288(C2xC8).6(C3xC6)288,324
(C2×C8).7(C3×C6) = C32×C8⋊C4φ: C3×C6/C32C2 ⊆ Aut C2×C8288(C2xC8).7(C3xC6)288,315
(C2×C8).8(C3×C6) = C32×M5(2)φ: C3×C6/C32C2 ⊆ Aut C2×C8144(C2xC8).8(C3xC6)288,328

׿
×
𝔽