Extensions 1→N→G→Q→1 with N=Q8 and Q=C3×Dic3

Direct product G=N×Q with N=Q8 and Q=C3×Dic3
dρLabelID
C3×Q8×Dic396C3xQ8xDic3288,716

Semidirect products G=N:Q with N=Q8 and Q=C3×Dic3
extensionφ:Q→Out NdρLabelID
Q8⋊(C3×Dic3) = C3×Q8⋊Dic3φ: C3×Dic3/C6S3 ⊆ Out Q896Q8:(C3xDic3)288,399
Q82(C3×Dic3) = Dic3×SL2(𝔽3)φ: C3×Dic3/Dic3C3 ⊆ Out Q896Q8:2(C3xDic3)288,409
Q83(C3×Dic3) = C3×Q82Dic3φ: C3×Dic3/C3×C6C2 ⊆ Out Q896Q8:3(C3xDic3)288,269
Q84(C3×Dic3) = C3×Q83Dic3φ: C3×Dic3/C3×C6C2 ⊆ Out Q8484Q8:4(C3xDic3)288,271

Non-split extensions G=N.Q with N=Q8 and Q=C3×Dic3
extensionφ:Q→Out NdρLabelID
Q8.(C3×Dic3) = C3×U2(𝔽3)φ: C3×Dic3/C6S3 ⊆ Out Q8722Q8.(C3xDic3)288,400
Q8.2(C3×Dic3) = SL2(𝔽3).Dic3φ: C3×Dic3/Dic3C3 ⊆ Out Q8964Q8.2(C3xDic3)288,410
Q8.3(C3×Dic3) = C3×D4.Dic3φ: trivial image484Q8.3(C3xDic3)288,719

׿
×
𝔽