Extensions 1→N→G→Q→1 with N=C6 and Q=Dic12

Direct product G=N×Q with N=C6 and Q=Dic12
dρLabelID
C6×Dic1296C6xDic12288,676

Semidirect products G=N:Q with N=C6 and Q=Dic12
extensionφ:Q→Aut NdρLabelID
C61Dic12 = C2×C325Q16φ: Dic12/C24C2 ⊆ Aut C6288C6:1Dic12288,762
C62Dic12 = C2×C323Q16φ: Dic12/Dic6C2 ⊆ Aut C696C6:2Dic12288,483

Non-split extensions G=N.Q with N=C6 and Q=Dic12
extensionφ:Q→Aut NdρLabelID
C6.1Dic12 = C36.45D4φ: Dic12/C24C2 ⊆ Aut C6288C6.1Dic12288,24
C6.2Dic12 = C721C4φ: Dic12/C24C2 ⊆ Aut C6288C6.2Dic12288,26
C6.3Dic12 = C2×Dic36φ: Dic12/C24C2 ⊆ Aut C6288C6.3Dic12288,109
C6.4Dic12 = C6.4Dic12φ: Dic12/C24C2 ⊆ Aut C6288C6.4Dic12288,291
C6.5Dic12 = C241Dic3φ: Dic12/C24C2 ⊆ Aut C6288C6.5Dic12288,293
C6.6Dic12 = C6.Dic12φ: Dic12/Dic6C2 ⊆ Aut C696C6.6Dic12288,214
C6.7Dic12 = C12.73D12φ: Dic12/Dic6C2 ⊆ Aut C696C6.7Dic12288,215
C6.8Dic12 = C6.18D24φ: Dic12/Dic6C2 ⊆ Aut C696C6.8Dic12288,223
C6.9Dic12 = C3×C2.Dic12central extension (φ=1)96C6.9Dic12288,250
C6.10Dic12 = C3×C241C4central extension (φ=1)96C6.10Dic12288,252

׿
×
𝔽