Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=M4(2)

Direct product G=N×Q with N=C3⋊S3 and Q=M4(2)
dρLabelID
M4(2)×C3⋊S372M4(2)xC3:S3288,763

Semidirect products G=N:Q with N=C3⋊S3 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
C3⋊S31M4(2) = C24⋊D6φ: M4(2)/C8C2 ⊆ Out C3⋊S3484C3:S3:1M4(2)288,439
C3⋊S32M4(2) = C3⋊C820D6φ: M4(2)/C2×C4C2 ⊆ Out C3⋊S3244C3:S3:2M4(2)288,466
C3⋊S33M4(2) = C3⋊S3⋊M4(2)φ: M4(2)/C2×C4C2 ⊆ Out C3⋊S3244C3:S3:3M4(2)288,931

Non-split extensions G=N.Q with N=C3⋊S3 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
C3⋊S3.1M4(2) = C4⋊F9φ: M4(2)/C4C4 ⊆ Out C3⋊S3368C3:S3.1M4(2)288,864
C3⋊S3.2M4(2) = S32⋊C8φ: M4(2)/C4C22 ⊆ Out C3⋊S3244C3:S3.2M4(2)288,374
C3⋊S3.3M4(2) = C32⋊C4⋊C8φ: M4(2)/C4C22 ⊆ Out C3⋊S3484C3:S3.3M4(2)288,380
C3⋊S3.4M4(2) = C4.4PSU3(𝔽2)φ: M4(2)/C4C22 ⊆ Out C3⋊S3488C3:S3.4M4(2)288,392
C3⋊S3.5M4(2) = C22⋊F9φ: M4(2)/C22C4 ⊆ Out C3⋊S3248+C3:S3.5M4(2)288,867
C3⋊S3.6M4(2) = (C3×C24)⋊C4φ: M4(2)/C8C2 ⊆ Out C3⋊S3484C3:S3.6M4(2)288,415

׿
×
𝔽