Extensions 1→N→G→Q→1 with N=C6 and Q=C4.Dic3

Direct product G=N×Q with N=C6 and Q=C4.Dic3
dρLabelID
C6×C4.Dic348C6xC4.Dic3288,692

Semidirect products G=N:Q with N=C6 and Q=C4.Dic3
extensionφ:Q→Aut NdρLabelID
C61(C4.Dic3) = C2×D6.Dic3φ: C4.Dic3/C3⋊C8C2 ⊆ Aut C696C6:1(C4.Dic3)288,467
C62(C4.Dic3) = C2×C12.58D6φ: C4.Dic3/C2×C12C2 ⊆ Aut C6144C6:2(C4.Dic3)288,778

Non-split extensions G=N.Q with N=C6 and Q=C4.Dic3
extensionφ:Q→Aut NdρLabelID
C6.1(C4.Dic3) = C3⋊C8⋊Dic3φ: C4.Dic3/C3⋊C8C2 ⊆ Aut C696C6.1(C4.Dic3)288,202
C6.2(C4.Dic3) = C12.77D12φ: C4.Dic3/C3⋊C8C2 ⊆ Aut C696C6.2(C4.Dic3)288,204
C6.3(C4.Dic3) = C12.81D12φ: C4.Dic3/C3⋊C8C2 ⊆ Aut C696C6.3(C4.Dic3)288,219
C6.4(C4.Dic3) = C42.D9φ: C4.Dic3/C2×C12C2 ⊆ Aut C6288C6.4(C4.Dic3)288,10
C6.5(C4.Dic3) = C36⋊C8φ: C4.Dic3/C2×C12C2 ⊆ Aut C6288C6.5(C4.Dic3)288,11
C6.6(C4.Dic3) = C36.55D4φ: C4.Dic3/C2×C12C2 ⊆ Aut C6144C6.6(C4.Dic3)288,37
C6.7(C4.Dic3) = C2×C4.Dic9φ: C4.Dic3/C2×C12C2 ⊆ Aut C6144C6.7(C4.Dic3)288,131
C6.8(C4.Dic3) = C122.C2φ: C4.Dic3/C2×C12C2 ⊆ Aut C6288C6.8(C4.Dic3)288,278
C6.9(C4.Dic3) = C12.57D12φ: C4.Dic3/C2×C12C2 ⊆ Aut C6288C6.9(C4.Dic3)288,279
C6.10(C4.Dic3) = C627C8φ: C4.Dic3/C2×C12C2 ⊆ Aut C6144C6.10(C4.Dic3)288,305
C6.11(C4.Dic3) = C3×C42.S3central extension (φ=1)96C6.11(C4.Dic3)288,237
C6.12(C4.Dic3) = C3×C12⋊C8central extension (φ=1)96C6.12(C4.Dic3)288,238
C6.13(C4.Dic3) = C3×C12.55D4central extension (φ=1)48C6.13(C4.Dic3)288,264

׿
×
𝔽