Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=C12

Direct product G=N×Q with N=C3×Q8 and Q=C12
dρLabelID
Q8×C3×C12288Q8xC3xC12288,816

Semidirect products G=N:Q with N=C3×Q8 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊C12 = Dic3×SL2(𝔽3)φ: C12/C2C6 ⊆ Out C3×Q896(C3xQ8):C12288,409
(C3×Q8)⋊2C12 = C12×SL2(𝔽3)φ: C12/C4C3 ⊆ Out C3×Q896(C3xQ8):2C12288,633
(C3×Q8)⋊3C12 = C3×Q82Dic3φ: C12/C6C2 ⊆ Out C3×Q896(C3xQ8):3C12288,269
(C3×Q8)⋊4C12 = C3×Q83Dic3φ: C12/C6C2 ⊆ Out C3×Q8484(C3xQ8):4C12288,271
(C3×Q8)⋊5C12 = C3×Q8×Dic3φ: C12/C6C2 ⊆ Out C3×Q896(C3xQ8):5C12288,716
(C3×Q8)⋊6C12 = C32×Q8⋊C4φ: C12/C6C2 ⊆ Out C3×Q8288(C3xQ8):6C12288,321
(C3×Q8)⋊7C12 = C32×C4≀C2φ: C12/C6C2 ⊆ Out C3×Q872(C3xQ8):7C12288,322

Non-split extensions G=N.Q with N=C3×Q8 and Q=C12
extensionφ:Q→Out NdρLabelID
(C3×Q8).C12 = SL2(𝔽3).Dic3φ: C12/C2C6 ⊆ Out C3×Q8964(C3xQ8).C12288,410
(C3×Q8).2C12 = C4×Q8⋊C9φ: C12/C4C3 ⊆ Out C3×Q8288(C3xQ8).2C12288,72
(C3×Q8).3C12 = Q8.C36φ: C12/C4C3 ⊆ Out C3×Q81442(C3xQ8).3C12288,77
(C3×Q8).4C12 = C3×C8.A4φ: C12/C4C3 ⊆ Out C3×Q8962(C3xQ8).4C12288,638
(C3×Q8).5C12 = C3×D4.Dic3φ: C12/C6C2 ⊆ Out C3×Q8484(C3xQ8).5C12288,719
(C3×Q8).6C12 = C9×Q8⋊C4φ: C12/C6C2 ⊆ Out C3×Q8288(C3xQ8).6C12288,53
(C3×Q8).7C12 = C9×C4≀C2φ: C12/C6C2 ⊆ Out C3×Q8722(C3xQ8).7C12288,54
(C3×Q8).8C12 = Q8×C36φ: trivial image288(C3xQ8).8C12288,169
(C3×Q8).9C12 = C9×C8○D4φ: trivial image1442(C3xQ8).9C12288,181
(C3×Q8).10C12 = C32×C8○D4φ: trivial image144(C3xQ8).10C12288,828

׿
×
𝔽