extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1(C3×Q8) = C3×C6.Q16 | φ: C3×Q8/C6 → C22 ⊆ Aut C12 | 96 | | C12.1(C3xQ8) | 288,241 |
C12.2(C3×Q8) = C3×C12.Q8 | φ: C3×Q8/C6 → C22 ⊆ Aut C12 | 96 | | C12.2(C3xQ8) | 288,242 |
C12.3(C3×Q8) = C3×C4.Dic6 | φ: C3×Q8/C6 → C22 ⊆ Aut C12 | 96 | | C12.3(C3xQ8) | 288,661 |
C12.4(C3×Q8) = C3×C8⋊Dic3 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 96 | | C12.4(C3xQ8) | 288,251 |
C12.5(C3×Q8) = C3×C24⋊1C4 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 96 | | C12.5(C3xQ8) | 288,252 |
C12.6(C3×Q8) = C3×C12.6Q8 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 96 | | C12.6(C3xQ8) | 288,641 |
C12.7(C3×Q8) = C3×C12⋊C8 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 96 | | C12.7(C3xQ8) | 288,238 |
C12.8(C3×Q8) = C3×Dic3⋊C8 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 96 | | C12.8(C3xQ8) | 288,248 |
C12.9(C3×Q8) = C9×C4.Q8 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 288 | | C12.9(C3xQ8) | 288,56 |
C12.10(C3×Q8) = C9×C2.D8 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 288 | | C12.10(C3xQ8) | 288,57 |
C12.11(C3×Q8) = C9×C42.C2 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 288 | | C12.11(C3xQ8) | 288,175 |
C12.12(C3×Q8) = C9×C4⋊Q8 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 288 | | C12.12(C3xQ8) | 288,178 |
C12.13(C3×Q8) = C32×C4.Q8 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 288 | | C12.13(C3xQ8) | 288,324 |
C12.14(C3×Q8) = C32×C2.D8 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 288 | | C12.14(C3xQ8) | 288,325 |
C12.15(C3×Q8) = C32×C42.C2 | φ: C3×Q8/C12 → C2 ⊆ Aut C12 | 288 | | C12.15(C3xQ8) | 288,822 |
C12.16(C3×Q8) = C9×C4⋊C8 | central extension (φ=1) | 288 | | C12.16(C3xQ8) | 288,55 |
C12.17(C3×Q8) = Q8×C36 | central extension (φ=1) | 288 | | C12.17(C3xQ8) | 288,169 |
C12.18(C3×Q8) = C32×C4⋊C8 | central extension (φ=1) | 288 | | C12.18(C3xQ8) | 288,323 |