Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C3×C6

Direct product G=N×Q with N=C2×D4 and Q=C3×C6
dρLabelID
D4×C62144D4xC6^2288,1019

Semidirect products G=N:Q with N=C2×D4 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1(C3×C6) = C32×C22≀C2φ: C3×C6/C32C2 ⊆ Out C2×D472(C2xD4):1(C3xC6)288,817
(C2×D4)⋊2(C3×C6) = C32×C4⋊D4φ: C3×C6/C32C2 ⊆ Out C2×D4144(C2xD4):2(C3xC6)288,818
(C2×D4)⋊3(C3×C6) = C32×C41D4φ: C3×C6/C32C2 ⊆ Out C2×D4144(C2xD4):3(C3xC6)288,824
(C2×D4)⋊4(C3×C6) = D8×C3×C6φ: C3×C6/C32C2 ⊆ Out C2×D4144(C2xD4):4(C3xC6)288,829
(C2×D4)⋊5(C3×C6) = C32×C8⋊C22φ: C3×C6/C32C2 ⊆ Out C2×D472(C2xD4):5(C3xC6)288,833
(C2×D4)⋊6(C3×C6) = C32×2+ 1+4φ: C3×C6/C32C2 ⊆ Out C2×D472(C2xD4):6(C3xC6)288,1022
(C2×D4)⋊7(C3×C6) = C4○D4×C3×C6φ: trivial image144(C2xD4):7(C3xC6)288,1021

Non-split extensions G=N.Q with N=C2×D4 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
(C2×D4).1(C3×C6) = C32×C23⋊C4φ: C3×C6/C32C2 ⊆ Out C2×D472(C2xD4).1(C3xC6)288,317
(C2×D4).2(C3×C6) = C32×C4.D4φ: C3×C6/C32C2 ⊆ Out C2×D472(C2xD4).2(C3xC6)288,318
(C2×D4).3(C3×C6) = C32×D4⋊C4φ: C3×C6/C32C2 ⊆ Out C2×D4144(C2xD4).3(C3xC6)288,320
(C2×D4).4(C3×C6) = C32×C22.D4φ: C3×C6/C32C2 ⊆ Out C2×D4144(C2xD4).4(C3xC6)288,820
(C2×D4).5(C3×C6) = C32×C4.4D4φ: C3×C6/C32C2 ⊆ Out C2×D4144(C2xD4).5(C3xC6)288,821
(C2×D4).6(C3×C6) = SD16×C3×C6φ: C3×C6/C32C2 ⊆ Out C2×D4144(C2xD4).6(C3xC6)288,830
(C2×D4).7(C3×C6) = D4×C3×C12φ: trivial image144(C2xD4).7(C3xC6)288,815

׿
×
𝔽