Extensions 1→N→G→Q→1 with N=C4○D4 and Q=C3×S3

Direct product G=N×Q with N=C4○D4 and Q=C3×S3
dρLabelID
C3×S3×C4○D4484C3xS3xC4oD4288,998

Semidirect products G=N:Q with N=C4○D4 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
C4○D41(C3×S3) = C3×C4.6S4φ: C3×S3/C3S3 ⊆ Out C4○D4482C4oD4:1(C3xS3)288,903
C4○D42(C3×S3) = C3×C4.3S4φ: C3×S3/C3S3 ⊆ Out C4○D4484C4oD4:2(C3xS3)288,904
C4○D43(C3×S3) = D12.A4φ: C3×S3/C3C6 ⊆ Out C4○D4484-C4oD4:3(C3xS3)288,926
C4○D44(C3×S3) = S3×C4.A4φ: C3×S3/S3C3 ⊆ Out C4○D4484C4oD4:4(C3xS3)288,925
C4○D45(C3×S3) = C3×D4⋊D6φ: C3×S3/C32C2 ⊆ Out C4○D4484C4oD4:5(C3xS3)288,720
C4○D46(C3×S3) = C3×Q8.13D6φ: C3×S3/C32C2 ⊆ Out C4○D4484C4oD4:6(C3xS3)288,721
C4○D47(C3×S3) = C3×D4○D12φ: C3×S3/C32C2 ⊆ Out C4○D4484C4oD4:7(C3xS3)288,999
C4○D48(C3×S3) = C3×Q8○D12φ: C3×S3/C32C2 ⊆ Out C4○D4484C4oD4:8(C3xS3)288,1000

Non-split extensions G=N.Q with N=C4○D4 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
C4○D4.1(C3×S3) = C3×U2(𝔽3)φ: C3×S3/C3S3 ⊆ Out C4○D4722C4oD4.1(C3xS3)288,400
C4○D4.2(C3×S3) = C3×C4.S4φ: C3×S3/C3S3 ⊆ Out C4○D4964C4oD4.2(C3xS3)288,902
C4○D4.3(C3×S3) = Dic6.A4φ: C3×S3/C3C6 ⊆ Out C4○D4724+C4oD4.3(C3xS3)288,924
C4○D4.4(C3×S3) = SL2(𝔽3).Dic3φ: C3×S3/S3C3 ⊆ Out C4○D4964C4oD4.4(C3xS3)288,410
C4○D4.5(C3×S3) = C3×Q83Dic3φ: C3×S3/C32C2 ⊆ Out C4○D4484C4oD4.5(C3xS3)288,271
C4○D4.6(C3×S3) = C3×Q8.14D6φ: C3×S3/C32C2 ⊆ Out C4○D4484C4oD4.6(C3xS3)288,722
C4○D4.7(C3×S3) = C3×D4.Dic3φ: trivial image484C4oD4.7(C3xS3)288,719

׿
×
𝔽