Extensions 1→N→G→Q→1 with N=C3 and Q=C8⋊D6

Direct product G=N×Q with N=C3 and Q=C8⋊D6
dρLabelID
C3×C8⋊D6484C3xC8:D6288,679

Semidirect products G=N:Q with N=C3 and Q=C8⋊D6
extensionφ:Q→Aut NdρLabelID
C31(C8⋊D6) = C241D6φ: C8⋊D6/C24⋊C2C2 ⊆ Aut C3484+C3:1(C8:D6)288,442
C32(C8⋊D6) = D24⋊S3φ: C8⋊D6/D24C2 ⊆ Aut C3484C3:2(C8:D6)288,443
C33(C8⋊D6) = C243D6φ: C8⋊D6/C3×M4(2)C2 ⊆ Aut C372C3:3(C8:D6)288,765
C34(C8⋊D6) = D12.28D6φ: C8⋊D6/C2×D12C2 ⊆ Aut C3484C3:4(C8:D6)288,478
C35(C8⋊D6) = D1218D6φ: C8⋊D6/C4○D12C2 ⊆ Aut C3244+C3:5(C8:D6)288,473

Non-split extensions G=N.Q with N=C3 and Q=C8⋊D6
extensionφ:Q→Aut NdρLabelID
C3.(C8⋊D6) = C8⋊D18φ: C8⋊D6/C3×M4(2)C2 ⊆ Aut C3724+C3.(C8:D6)288,118

׿
×
𝔽