Extensions 1→N→G→Q→1 with N=C4○D4 and Q=C3⋊S3

Direct product G=N×Q with N=C4○D4 and Q=C3⋊S3
dρLabelID
C4○D4×C3⋊S372C4oD4xC3:S3288,1013

Semidirect products G=N:Q with N=C4○D4 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
C4○D41(C3⋊S3) = C12.14S4φ: C3⋊S3/C3S3 ⊆ Out C4○D4484C4oD4:1(C3:S3)288,914
C4○D42(C3⋊S3) = C12.7S4φ: C3⋊S3/C3S3 ⊆ Out C4○D4484+C4oD4:2(C3:S3)288,915
C4○D43(C3⋊S3) = C62.73D4φ: C3⋊S3/C32C2 ⊆ Out C4○D472C4oD4:3(C3:S3)288,806
C4○D44(C3⋊S3) = C62.74D4φ: C3⋊S3/C32C2 ⊆ Out C4○D4144C4oD4:4(C3:S3)288,807
C4○D45(C3⋊S3) = C62.154C23φ: C3⋊S3/C32C2 ⊆ Out C4○D472C4oD4:5(C3:S3)288,1014
C4○D46(C3⋊S3) = C3292- 1+4φ: C3⋊S3/C32C2 ⊆ Out C4○D4144C4oD4:6(C3:S3)288,1015

Non-split extensions G=N.Q with N=C4○D4 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
C4○D4.1(C3⋊S3) = C3⋊U2(𝔽3)φ: C3⋊S3/C3S3 ⊆ Out C4○D4724C4oD4.1(C3:S3)288,404
C4○D4.2(C3⋊S3) = C12.6S4φ: C3⋊S3/C3S3 ⊆ Out C4○D4964-C4oD4.2(C3:S3)288,913
C4○D4.3(C3⋊S3) = C62.39D4φ: C3⋊S3/C32C2 ⊆ Out C4○D472C4oD4.3(C3:S3)288,312
C4○D4.4(C3⋊S3) = C62.75D4φ: C3⋊S3/C32C2 ⊆ Out C4○D4144C4oD4.4(C3:S3)288,808
C4○D4.5(C3⋊S3) = D4.(C3⋊Dic3)φ: trivial image144C4oD4.5(C3:S3)288,805

׿
×
𝔽