Extensions 1→N→G→Q→1 with N=C6.D4 and Q=S3

Direct product G=N×Q with N=C6.D4 and Q=S3
dρLabelID
S3×C6.D448S3xC6.D4288,616

Semidirect products G=N:Q with N=C6.D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C6.D41S3 = C62.31D4φ: S3/C3C2 ⊆ Out C6.D4244C6.D4:1S3288,228
C6.D42S3 = C62.32D4φ: S3/C3C2 ⊆ Out C6.D4244C6.D4:2S3288,229
C6.D43S3 = C62.95C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4:3S3288,601
C6.D44S3 = C62.100C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4:4S3288,606
C6.D45S3 = C62.101C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4:5S3288,607
C6.D46S3 = C62.57D4φ: S3/C3C2 ⊆ Out C6.D448C6.D4:6S3288,610
C6.D47S3 = C62.60D4φ: S3/C3C2 ⊆ Out C6.D448C6.D4:7S3288,614
C6.D48S3 = C62.111C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4:8S3288,617
C6.D49S3 = C62.113C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4:9S3288,619
C6.D410S3 = C62.115C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4:10S3288,621
C6.D411S3 = C62.116C23φ: S3/C3C2 ⊆ Out C6.D424C6.D4:11S3288,622
C6.D412S3 = C62.117C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4:12S3288,623
C6.D413S3 = C625D4φ: S3/C3C2 ⊆ Out C6.D448C6.D4:13S3288,625
C6.D414S3 = C628D4φ: S3/C3C2 ⊆ Out C6.D424C6.D4:14S3288,629
C6.D415S3 = C62.94C23φ: trivial image48C6.D4:15S3288,600

Non-split extensions G=N.Q with N=C6.D4 and Q=S3
extensionφ:Q→Out NdρLabelID
C6.D4.1S3 = C62.98C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4.1S3288,604
C6.D4.2S3 = C62.99C23φ: S3/C3C2 ⊆ Out C6.D448C6.D4.2S3288,605
C6.D4.3S3 = C623Q8φ: S3/C3C2 ⊆ Out C6.D448C6.D4.3S3288,612
C6.D4.4S3 = C624Q8φ: S3/C3C2 ⊆ Out C6.D448C6.D4.4S3288,630
C6.D4.5S3 = C62.97C23φ: trivial image48C6.D4.5S3288,603

׿
×
𝔽