Extensions 1→N→G→Q→1 with N=C3×SL2(𝔽3) and Q=C4

Direct product G=N×Q with N=C3×SL2(𝔽3) and Q=C4
dρLabelID
C12×SL2(𝔽3)96C12xSL(2,3)288,633

Semidirect products G=N:Q with N=C3×SL2(𝔽3) and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×SL2(𝔽3))⋊1C4 = C6.GL2(𝔽3)φ: C4/C2C2 ⊆ Out C3×SL2(𝔽3)96(C3xSL(2,3)):1C4288,403
(C3×SL2(𝔽3))⋊2C4 = C3⋊U2(𝔽3)φ: C4/C2C2 ⊆ Out C3×SL2(𝔽3)724(C3xSL(2,3)):2C4288,404
(C3×SL2(𝔽3))⋊3C4 = Dic3×SL2(𝔽3)φ: C4/C2C2 ⊆ Out C3×SL2(𝔽3)96(C3xSL(2,3)):3C4288,409
(C3×SL2(𝔽3))⋊4C4 = C3×Q8⋊Dic3φ: C4/C2C2 ⊆ Out C3×SL2(𝔽3)96(C3xSL(2,3)):4C4288,399
(C3×SL2(𝔽3))⋊5C4 = C3×U2(𝔽3)φ: C4/C2C2 ⊆ Out C3×SL2(𝔽3)722(C3xSL(2,3)):5C4288,400

Non-split extensions G=N.Q with N=C3×SL2(𝔽3) and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×SL2(𝔽3)).C4 = SL2(𝔽3).Dic3φ: C4/C2C2 ⊆ Out C3×SL2(𝔽3)964(C3xSL(2,3)).C4288,410
(C3×SL2(𝔽3)).2C4 = C3×C8.A4φ: trivial image962(C3xSL(2,3)).2C4288,638

׿
×
𝔽