Extensions 1→N→G→Q→1 with N=C4 and Q=C3×Dic6

Direct product G=N×Q with N=C4 and Q=C3×Dic6
dρLabelID
C12×Dic696C12xDic6288,639

Semidirect products G=N:Q with N=C4 and Q=C3×Dic6
extensionφ:Q→Aut NdρLabelID
C41(C3×Dic6) = C3×C12⋊Q8φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C496C4:1(C3xDic6)288,659
C42(C3×Dic6) = C3×C122Q8φ: C3×Dic6/C3×C12C2 ⊆ Aut C496C4:2(C3xDic6)288,640

Non-split extensions G=N.Q with N=C4 and Q=C3×Dic6
extensionφ:Q→Aut NdρLabelID
C4.1(C3×Dic6) = C3×C6.Q16φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C496C4.1(C3xDic6)288,241
C4.2(C3×Dic6) = C3×C12.Q8φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C496C4.2(C3xDic6)288,242
C4.3(C3×Dic6) = C3×C4.Dic6φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C496C4.3(C3xDic6)288,661
C4.4(C3×Dic6) = C3×C8⋊Dic3φ: C3×Dic6/C3×C12C2 ⊆ Aut C496C4.4(C3xDic6)288,251
C4.5(C3×Dic6) = C3×C241C4φ: C3×Dic6/C3×C12C2 ⊆ Aut C496C4.5(C3xDic6)288,252
C4.6(C3×Dic6) = C3×C12.6Q8φ: C3×Dic6/C3×C12C2 ⊆ Aut C496C4.6(C3xDic6)288,641
C4.7(C3×Dic6) = C3×C12⋊C8central extension (φ=1)96C4.7(C3xDic6)288,238
C4.8(C3×Dic6) = C3×Dic3⋊C8central extension (φ=1)96C4.8(C3xDic6)288,248

׿
×
𝔽