Extensions 1→N→G→Q→1 with N=C6 and Q=C3×SD16

Direct product G=N×Q with N=C6 and Q=C3×SD16
dρLabelID
SD16×C3×C6144SD16xC3xC6288,830

Semidirect products G=N:Q with N=C6 and Q=C3×SD16
extensionφ:Q→Aut NdρLabelID
C61(C3×SD16) = C6×C24⋊C2φ: C3×SD16/C24C2 ⊆ Aut C696C6:1(C3xSD16)288,673
C62(C3×SD16) = C6×D4.S3φ: C3×SD16/C3×D4C2 ⊆ Aut C648C6:2(C3xSD16)288,704
C63(C3×SD16) = C6×Q82S3φ: C3×SD16/C3×Q8C2 ⊆ Aut C696C6:3(C3xSD16)288,712

Non-split extensions G=N.Q with N=C6 and Q=C3×SD16
extensionφ:Q→Aut NdρLabelID
C6.1(C3×SD16) = C3×C2.Dic12φ: C3×SD16/C24C2 ⊆ Aut C696C6.1(C3xSD16)288,250
C6.2(C3×SD16) = C3×C8⋊Dic3φ: C3×SD16/C24C2 ⊆ Aut C696C6.2(C3xSD16)288,251
C6.3(C3×SD16) = C3×C2.D24φ: C3×SD16/C24C2 ⊆ Aut C696C6.3(C3xSD16)288,255
C6.4(C3×SD16) = C3×C6.SD16φ: C3×SD16/C3×D4C2 ⊆ Aut C696C6.4(C3xSD16)288,244
C6.5(C3×SD16) = C3×D4⋊Dic3φ: C3×SD16/C3×D4C2 ⊆ Aut C648C6.5(C3xSD16)288,266
C6.6(C3×SD16) = C3×C12.Q8φ: C3×SD16/C3×Q8C2 ⊆ Aut C696C6.6(C3xSD16)288,242
C6.7(C3×SD16) = C3×C6.D8φ: C3×SD16/C3×Q8C2 ⊆ Aut C696C6.7(C3xSD16)288,243
C6.8(C3×SD16) = C3×Q82Dic3φ: C3×SD16/C3×Q8C2 ⊆ Aut C696C6.8(C3xSD16)288,269
C6.9(C3×SD16) = C9×D4⋊C4central extension (φ=1)144C6.9(C3xSD16)288,52
C6.10(C3×SD16) = C9×Q8⋊C4central extension (φ=1)288C6.10(C3xSD16)288,53
C6.11(C3×SD16) = C9×C4.Q8central extension (φ=1)288C6.11(C3xSD16)288,56
C6.12(C3×SD16) = SD16×C18central extension (φ=1)144C6.12(C3xSD16)288,183
C6.13(C3×SD16) = C32×D4⋊C4central extension (φ=1)144C6.13(C3xSD16)288,320
C6.14(C3×SD16) = C32×Q8⋊C4central extension (φ=1)288C6.14(C3xSD16)288,321
C6.15(C3×SD16) = C32×C4.Q8central extension (φ=1)288C6.15(C3xSD16)288,324

׿
×
𝔽