d | ρ | Label | ID | ||
---|---|---|---|---|---|
C2×C4×Dic9 | 288 | C2xC4xDic9 | 288,132 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4)⋊Dic9 = C23⋊2Dic9 | φ: Dic9/C9 → C4 ⊆ Aut C2×C4 | 72 | 4 | (C2xC4):Dic9 | 288,41 |
(C2×C4)⋊2Dic9 = C18.C42 | φ: Dic9/C18 → C2 ⊆ Aut C2×C4 | 288 | (C2xC4):2Dic9 | 288,38 | |
(C2×C4)⋊3Dic9 = C2×C4⋊Dic9 | φ: Dic9/C18 → C2 ⊆ Aut C2×C4 | 288 | (C2xC4):3Dic9 | 288,135 | |
(C2×C4)⋊4Dic9 = C23.26D18 | φ: Dic9/C18 → C2 ⊆ Aut C2×C4 | 144 | (C2xC4):4Dic9 | 288,136 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C4).Dic9 = C36.9D4 | φ: Dic9/C9 → C4 ⊆ Aut C2×C4 | 144 | 4 | (C2xC4).Dic9 | 288,42 |
(C2×C4).2Dic9 = C42.D9 | φ: Dic9/C18 → C2 ⊆ Aut C2×C4 | 288 | (C2xC4).2Dic9 | 288,10 | |
(C2×C4).3Dic9 = C36⋊C8 | φ: Dic9/C18 → C2 ⊆ Aut C2×C4 | 288 | (C2xC4).3Dic9 | 288,11 | |
(C2×C4).4Dic9 = C36.55D4 | φ: Dic9/C18 → C2 ⊆ Aut C2×C4 | 144 | (C2xC4).4Dic9 | 288,37 | |
(C2×C4).5Dic9 = C36.C8 | φ: Dic9/C18 → C2 ⊆ Aut C2×C4 | 144 | 2 | (C2xC4).5Dic9 | 288,19 |
(C2×C4).6Dic9 = C2×C4.Dic9 | φ: Dic9/C18 → C2 ⊆ Aut C2×C4 | 144 | (C2xC4).6Dic9 | 288,131 | |
(C2×C4).7Dic9 = C4×C9⋊C8 | central extension (φ=1) | 288 | (C2xC4).7Dic9 | 288,9 | |
(C2×C4).8Dic9 = C2×C9⋊C16 | central extension (φ=1) | 288 | (C2xC4).8Dic9 | 288,18 | |
(C2×C4).9Dic9 = C22×C9⋊C8 | central extension (φ=1) | 288 | (C2xC4).9Dic9 | 288,130 |