Extensions 1→N→G→Q→1 with N=C2×C4 and Q=Dic9

Direct product G=N×Q with N=C2×C4 and Q=Dic9
dρLabelID
C2×C4×Dic9288C2xC4xDic9288,132

Semidirect products G=N:Q with N=C2×C4 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊Dic9 = C232Dic9φ: Dic9/C9C4 ⊆ Aut C2×C4724(C2xC4):Dic9288,41
(C2×C4)⋊2Dic9 = C18.C42φ: Dic9/C18C2 ⊆ Aut C2×C4288(C2xC4):2Dic9288,38
(C2×C4)⋊3Dic9 = C2×C4⋊Dic9φ: Dic9/C18C2 ⊆ Aut C2×C4288(C2xC4):3Dic9288,135
(C2×C4)⋊4Dic9 = C23.26D18φ: Dic9/C18C2 ⊆ Aut C2×C4144(C2xC4):4Dic9288,136

Non-split extensions G=N.Q with N=C2×C4 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
(C2×C4).Dic9 = C36.9D4φ: Dic9/C9C4 ⊆ Aut C2×C41444(C2xC4).Dic9288,42
(C2×C4).2Dic9 = C42.D9φ: Dic9/C18C2 ⊆ Aut C2×C4288(C2xC4).2Dic9288,10
(C2×C4).3Dic9 = C36⋊C8φ: Dic9/C18C2 ⊆ Aut C2×C4288(C2xC4).3Dic9288,11
(C2×C4).4Dic9 = C36.55D4φ: Dic9/C18C2 ⊆ Aut C2×C4144(C2xC4).4Dic9288,37
(C2×C4).5Dic9 = C36.C8φ: Dic9/C18C2 ⊆ Aut C2×C41442(C2xC4).5Dic9288,19
(C2×C4).6Dic9 = C2×C4.Dic9φ: Dic9/C18C2 ⊆ Aut C2×C4144(C2xC4).6Dic9288,131
(C2×C4).7Dic9 = C4×C9⋊C8central extension (φ=1)288(C2xC4).7Dic9288,9
(C2×C4).8Dic9 = C2×C9⋊C16central extension (φ=1)288(C2xC4).8Dic9288,18
(C2×C4).9Dic9 = C22×C9⋊C8central extension (φ=1)288(C2xC4).9Dic9288,130

׿
×
𝔽