Extensions 1→N→G→Q→1 with N=C3 and Q=C2×Dic3⋊C4

Direct product G=N×Q with N=C3 and Q=C2×Dic3⋊C4
dρLabelID
C6×Dic3⋊C496C6xDic3:C4288,694

Semidirect products G=N:Q with N=C3 and Q=C2×Dic3⋊C4
extensionφ:Q→Aut NdρLabelID
C31(C2×Dic3⋊C4) = S3×Dic3⋊C4φ: C2×Dic3⋊C4/Dic3⋊C4C2 ⊆ Aut C396C3:1(C2xDic3:C4)288,524
C32(C2×Dic3⋊C4) = C2×Dic3⋊Dic3φ: C2×Dic3⋊C4/C22×Dic3C2 ⊆ Aut C396C3:2(C2xDic3:C4)288,613
C33(C2×Dic3⋊C4) = C2×C62.C22φ: C2×Dic3⋊C4/C22×Dic3C2 ⊆ Aut C396C3:3(C2xDic3:C4)288,615
C34(C2×Dic3⋊C4) = C2×C6.Dic6φ: C2×Dic3⋊C4/C22×C12C2 ⊆ Aut C3288C3:4(C2xDic3:C4)288,780

Non-split extensions G=N.Q with N=C3 and Q=C2×Dic3⋊C4
extensionφ:Q→Aut NdρLabelID
C3.(C2×Dic3⋊C4) = C2×Dic9⋊C4φ: C2×Dic3⋊C4/C22×C12C2 ⊆ Aut C3288C3.(C2xDic3:C4)288,133

׿
×
𝔽