Extensions 1→N→G→Q→1 with N=C4.A4 and Q=S3

Direct product G=N×Q with N=C4.A4 and Q=S3
dρLabelID
S3×C4.A4484S3xC4.A4288,925

Semidirect products G=N:Q with N=C4.A4 and Q=S3
extensionφ:Q→Out NdρLabelID
C4.A41S3 = C12.7S4φ: S3/C3C2 ⊆ Out C4.A4484+C4.A4:1S3288,915
C4.A42S3 = C12.14S4φ: S3/C3C2 ⊆ Out C4.A4484C4.A4:2S3288,914
C4.A43S3 = Dic6.A4φ: S3/C3C2 ⊆ Out C4.A4724+C4.A4:3S3288,924
C4.A44S3 = D12.A4φ: S3/C3C2 ⊆ Out C4.A4484-C4.A4:4S3288,926

Non-split extensions G=N.Q with N=C4.A4 and Q=S3
extensionφ:Q→Out NdρLabelID
C4.A4.1S3 = C12.6S4φ: S3/C3C2 ⊆ Out C4.A4964-C4.A4.1S3288,913
C4.A4.2S3 = C3⋊U2(𝔽3)φ: S3/C3C2 ⊆ Out C4.A4724C4.A4.2S3288,404
C4.A4.3S3 = SL2(𝔽3).Dic3φ: trivial image964C4.A4.3S3288,410

׿
×
𝔽