Extensions 1→N→G→Q→1 with N=C24 and Q=C12

Direct product G=NxQ with N=C24 and Q=C12
dρLabelID
C12xC24288C12xC24288,314

Semidirect products G=N:Q with N=C24 and Q=C12
extensionφ:Q→Aut NdρLabelID
C24:1C12 = C3xC24:1C4φ: C12/C6C2 ⊆ Aut C2496C24:1C12288,252
C24:2C12 = C3xC8:Dic3φ: C12/C6C2 ⊆ Aut C2496C24:2C12288,251
C24:3C12 = C32xC2.D8φ: C12/C6C2 ⊆ Aut C24288C24:3C12288,325
C24:4C12 = Dic3xC24φ: C12/C6C2 ⊆ Aut C2496C24:4C12288,247
C24:5C12 = C3xC24:C4φ: C12/C6C2 ⊆ Aut C2496C24:5C12288,249
C24:6C12 = C32xC4.Q8φ: C12/C6C2 ⊆ Aut C24288C24:6C12288,324
C24:7C12 = C32xC8:C4φ: C12/C6C2 ⊆ Aut C24288C24:7C12288,315

Non-split extensions G=N.Q with N=C24 and Q=C12
extensionφ:Q→Aut NdρLabelID
C24.1C12 = C3xC24.C4φ: C12/C6C2 ⊆ Aut C24482C24.1C12288,253
C24.2C12 = C9xC2.D8φ: C12/C6C2 ⊆ Aut C24288C24.2C12288,57
C24.3C12 = C32xC8.C4φ: C12/C6C2 ⊆ Aut C24144C24.3C12288,326
C24.4C12 = C3xC3:C32φ: C12/C6C2 ⊆ Aut C24962C24.4C12288,64
C24.5C12 = C6xC3:C16φ: C12/C6C2 ⊆ Aut C2496C24.5C12288,245
C24.6C12 = C3xC12.C8φ: C12/C6C2 ⊆ Aut C24482C24.6C12288,246
C24.7C12 = C9xC4.Q8φ: C12/C6C2 ⊆ Aut C24288C24.7C12288,56
C24.8C12 = C9xC8.C4φ: C12/C6C2 ⊆ Aut C241442C24.8C12288,58
C24.9C12 = C9xC8:C4φ: C12/C6C2 ⊆ Aut C24288C24.9C12288,47
C24.10C12 = C9xM5(2)φ: C12/C6C2 ⊆ Aut C241442C24.10C12288,60
C24.11C12 = C32xM5(2)φ: C12/C6C2 ⊆ Aut C24144C24.11C12288,328

׿
x
:
Z
F
o
wr
Q
<