extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4○D4)⋊1C6 = S3×C4.A4 | φ: C6/C1 → C6 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):1C6 | 288,925 |
(C3×C4○D4)⋊2C6 = D12.A4 | φ: C6/C1 → C6 ⊆ Out C3×C4○D4 | 48 | 4- | (C3xC4oD4):2C6 | 288,926 |
(C3×C4○D4)⋊3C6 = C3×D4.A4 | φ: C6/C1 → C6 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):3C6 | 288,985 |
(C3×C4○D4)⋊4C6 = C6×C4.A4 | φ: C6/C2 → C3 ⊆ Out C3×C4○D4 | 96 | | (C3xC4oD4):4C6 | 288,983 |
(C3×C4○D4)⋊5C6 = C3×D4⋊D6 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):5C6 | 288,720 |
(C3×C4○D4)⋊6C6 = C3×Q8.13D6 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):6C6 | 288,721 |
(C3×C4○D4)⋊7C6 = C3×S3×C4○D4 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):7C6 | 288,998 |
(C3×C4○D4)⋊8C6 = C3×D4○D12 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):8C6 | 288,999 |
(C3×C4○D4)⋊9C6 = C3×Q8○D12 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4):9C6 | 288,1000 |
(C3×C4○D4)⋊10C6 = C32×C4○D8 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 144 | | (C3xC4oD4):10C6 | 288,832 |
(C3×C4○D4)⋊11C6 = C32×C8⋊C22 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 72 | | (C3xC4oD4):11C6 | 288,833 |
(C3×C4○D4)⋊12C6 = C32×2+ 1+4 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 72 | | (C3xC4oD4):12C6 | 288,1022 |
(C3×C4○D4)⋊13C6 = C32×2- 1+4 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 144 | | (C3xC4oD4):13C6 | 288,1023 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4○D4).1C6 = SL2(𝔽3).Dic3 | φ: C6/C1 → C6 ⊆ Out C3×C4○D4 | 96 | 4 | (C3xC4oD4).1C6 | 288,410 |
(C3×C4○D4).2C6 = Dic6.A4 | φ: C6/C1 → C6 ⊆ Out C3×C4○D4 | 72 | 4+ | (C3xC4oD4).2C6 | 288,924 |
(C3×C4○D4).3C6 = 2+ 1+4⋊C9 | φ: C6/C1 → C6 ⊆ Out C3×C4○D4 | 72 | 4 | (C3xC4oD4).3C6 | 288,348 |
(C3×C4○D4).4C6 = 2- 1+4⋊C9 | φ: C6/C1 → C6 ⊆ Out C3×C4○D4 | 144 | 4 | (C3xC4oD4).4C6 | 288,349 |
(C3×C4○D4).5C6 = C3×Q8.A4 | φ: C6/C1 → C6 ⊆ Out C3×C4○D4 | 72 | 4 | (C3xC4oD4).5C6 | 288,984 |
(C3×C4○D4).6C6 = Q8.C36 | φ: C6/C2 → C3 ⊆ Out C3×C4○D4 | 144 | 2 | (C3xC4oD4).6C6 | 288,77 |
(C3×C4○D4).7C6 = C2×Q8.C18 | φ: C6/C2 → C3 ⊆ Out C3×C4○D4 | 144 | | (C3xC4oD4).7C6 | 288,347 |
(C3×C4○D4).8C6 = C3×C8.A4 | φ: C6/C2 → C3 ⊆ Out C3×C4○D4 | 96 | 2 | (C3xC4oD4).8C6 | 288,638 |
(C3×C4○D4).9C6 = C3×Q8⋊3Dic3 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).9C6 | 288,271 |
(C3×C4○D4).10C6 = C3×D4.Dic3 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).10C6 | 288,719 |
(C3×C4○D4).11C6 = C3×Q8.14D6 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 48 | 4 | (C3xC4oD4).11C6 | 288,722 |
(C3×C4○D4).12C6 = C9×C4≀C2 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 72 | 2 | (C3xC4oD4).12C6 | 288,54 |
(C3×C4○D4).13C6 = C9×C4○D8 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 144 | 2 | (C3xC4oD4).13C6 | 288,185 |
(C3×C4○D4).14C6 = C9×C8⋊C22 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 72 | 4 | (C3xC4oD4).14C6 | 288,186 |
(C3×C4○D4).15C6 = C9×C8.C22 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 144 | 4 | (C3xC4oD4).15C6 | 288,187 |
(C3×C4○D4).16C6 = C32×C4≀C2 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 72 | | (C3xC4oD4).16C6 | 288,322 |
(C3×C4○D4).17C6 = C9×2+ 1+4 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 72 | 4 | (C3xC4oD4).17C6 | 288,371 |
(C3×C4○D4).18C6 = C9×2- 1+4 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 144 | 4 | (C3xC4oD4).18C6 | 288,372 |
(C3×C4○D4).19C6 = C32×C8.C22 | φ: C6/C3 → C2 ⊆ Out C3×C4○D4 | 144 | | (C3xC4oD4).19C6 | 288,834 |
(C3×C4○D4).20C6 = C9×C8○D4 | φ: trivial image | 144 | 2 | (C3xC4oD4).20C6 | 288,181 |
(C3×C4○D4).21C6 = C4○D4×C18 | φ: trivial image | 144 | | (C3xC4oD4).21C6 | 288,370 |
(C3×C4○D4).22C6 = C32×C8○D4 | φ: trivial image | 144 | | (C3xC4oD4).22C6 | 288,828 |