Extensions 1→N→G→Q→1 with N=C3xC4oD4 and Q=C6

Direct product G=NxQ with N=C3xC4oD4 and Q=C6
dρLabelID
C4oD4xC3xC6144C4oD4xC3xC6288,1021

Semidirect products G=N:Q with N=C3xC4oD4 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xC4oD4):1C6 = S3xC4.A4φ: C6/C1C6 ⊆ Out C3xC4oD4484(C3xC4oD4):1C6288,925
(C3xC4oD4):2C6 = D12.A4φ: C6/C1C6 ⊆ Out C3xC4oD4484-(C3xC4oD4):2C6288,926
(C3xC4oD4):3C6 = C3xD4.A4φ: C6/C1C6 ⊆ Out C3xC4oD4484(C3xC4oD4):3C6288,985
(C3xC4oD4):4C6 = C6xC4.A4φ: C6/C2C3 ⊆ Out C3xC4oD496(C3xC4oD4):4C6288,983
(C3xC4oD4):5C6 = C3xD4:D6φ: C6/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):5C6288,720
(C3xC4oD4):6C6 = C3xQ8.13D6φ: C6/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):6C6288,721
(C3xC4oD4):7C6 = C3xS3xC4oD4φ: C6/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):7C6288,998
(C3xC4oD4):8C6 = C3xD4oD12φ: C6/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):8C6288,999
(C3xC4oD4):9C6 = C3xQ8oD12φ: C6/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4):9C6288,1000
(C3xC4oD4):10C6 = C32xC4oD8φ: C6/C3C2 ⊆ Out C3xC4oD4144(C3xC4oD4):10C6288,832
(C3xC4oD4):11C6 = C32xC8:C22φ: C6/C3C2 ⊆ Out C3xC4oD472(C3xC4oD4):11C6288,833
(C3xC4oD4):12C6 = C32x2+ 1+4φ: C6/C3C2 ⊆ Out C3xC4oD472(C3xC4oD4):12C6288,1022
(C3xC4oD4):13C6 = C32x2- 1+4φ: C6/C3C2 ⊆ Out C3xC4oD4144(C3xC4oD4):13C6288,1023

Non-split extensions G=N.Q with N=C3xC4oD4 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xC4oD4).1C6 = SL2(F3).Dic3φ: C6/C1C6 ⊆ Out C3xC4oD4964(C3xC4oD4).1C6288,410
(C3xC4oD4).2C6 = Dic6.A4φ: C6/C1C6 ⊆ Out C3xC4oD4724+(C3xC4oD4).2C6288,924
(C3xC4oD4).3C6 = 2+ 1+4:C9φ: C6/C1C6 ⊆ Out C3xC4oD4724(C3xC4oD4).3C6288,348
(C3xC4oD4).4C6 = 2- 1+4:C9φ: C6/C1C6 ⊆ Out C3xC4oD41444(C3xC4oD4).4C6288,349
(C3xC4oD4).5C6 = C3xQ8.A4φ: C6/C1C6 ⊆ Out C3xC4oD4724(C3xC4oD4).5C6288,984
(C3xC4oD4).6C6 = Q8.C36φ: C6/C2C3 ⊆ Out C3xC4oD41442(C3xC4oD4).6C6288,77
(C3xC4oD4).7C6 = C2xQ8.C18φ: C6/C2C3 ⊆ Out C3xC4oD4144(C3xC4oD4).7C6288,347
(C3xC4oD4).8C6 = C3xC8.A4φ: C6/C2C3 ⊆ Out C3xC4oD4962(C3xC4oD4).8C6288,638
(C3xC4oD4).9C6 = C3xQ8:3Dic3φ: C6/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4).9C6288,271
(C3xC4oD4).10C6 = C3xD4.Dic3φ: C6/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4).10C6288,719
(C3xC4oD4).11C6 = C3xQ8.14D6φ: C6/C3C2 ⊆ Out C3xC4oD4484(C3xC4oD4).11C6288,722
(C3xC4oD4).12C6 = C9xC4wrC2φ: C6/C3C2 ⊆ Out C3xC4oD4722(C3xC4oD4).12C6288,54
(C3xC4oD4).13C6 = C9xC4oD8φ: C6/C3C2 ⊆ Out C3xC4oD41442(C3xC4oD4).13C6288,185
(C3xC4oD4).14C6 = C9xC8:C22φ: C6/C3C2 ⊆ Out C3xC4oD4724(C3xC4oD4).14C6288,186
(C3xC4oD4).15C6 = C9xC8.C22φ: C6/C3C2 ⊆ Out C3xC4oD41444(C3xC4oD4).15C6288,187
(C3xC4oD4).16C6 = C32xC4wrC2φ: C6/C3C2 ⊆ Out C3xC4oD472(C3xC4oD4).16C6288,322
(C3xC4oD4).17C6 = C9x2+ 1+4φ: C6/C3C2 ⊆ Out C3xC4oD4724(C3xC4oD4).17C6288,371
(C3xC4oD4).18C6 = C9x2- 1+4φ: C6/C3C2 ⊆ Out C3xC4oD41444(C3xC4oD4).18C6288,372
(C3xC4oD4).19C6 = C32xC8.C22φ: C6/C3C2 ⊆ Out C3xC4oD4144(C3xC4oD4).19C6288,834
(C3xC4oD4).20C6 = C9xC8oD4φ: trivial image1442(C3xC4oD4).20C6288,181
(C3xC4oD4).21C6 = C4oD4xC18φ: trivial image144(C3xC4oD4).21C6288,370
(C3xC4oD4).22C6 = C32xC8oD4φ: trivial image144(C3xC4oD4).22C6288,828

׿
x
:
Z
F
o
wr
Q
<