extension | φ:Q→Aut N | d | ρ | Label | ID |
(C6×C24)⋊1C2 = C3×D6⋊C8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24):1C2 | 288,254 |
(C6×C24)⋊2C2 = C3×C2.D24 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24):2C2 | 288,255 |
(C6×C24)⋊3C2 = C12.60D12 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):3C2 | 288,295 |
(C6×C24)⋊4C2 = C62.84D4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):4C2 | 288,296 |
(C6×C24)⋊5C2 = C32×C22⋊C8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):5C2 | 288,316 |
(C6×C24)⋊6C2 = C32×D4⋊C4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):6C2 | 288,320 |
(C6×C24)⋊7C2 = C2×C32⋊5D8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):7C2 | 288,760 |
(C6×C24)⋊8C2 = C24.78D6 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):8C2 | 288,761 |
(C6×C24)⋊9C2 = C3×C4○D24 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 48 | 2 | (C6xC24):9C2 | 288,675 |
(C6×C24)⋊10C2 = C6×D24 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24):10C2 | 288,674 |
(C6×C24)⋊11C2 = C2×C24⋊2S3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):11C2 | 288,759 |
(C6×C24)⋊12C2 = C6×C24⋊C2 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24):12C2 | 288,673 |
(C6×C24)⋊13C2 = D8×C3×C6 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):13C2 | 288,829 |
(C6×C24)⋊14C2 = C32×C4○D8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):14C2 | 288,832 |
(C6×C24)⋊15C2 = S3×C2×C24 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24):15C2 | 288,670 |
(C6×C24)⋊16C2 = C2×C8×C3⋊S3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):16C2 | 288,756 |
(C6×C24)⋊17C2 = C2×C24⋊S3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):17C2 | 288,757 |
(C6×C24)⋊18C2 = C24.95D6 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):18C2 | 288,758 |
(C6×C24)⋊19C2 = C6×C8⋊S3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24):19C2 | 288,671 |
(C6×C24)⋊20C2 = C3×C8○D12 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 48 | 2 | (C6xC24):20C2 | 288,672 |
(C6×C24)⋊21C2 = SD16×C3×C6 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):21C2 | 288,830 |
(C6×C24)⋊22C2 = M4(2)×C3×C6 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):22C2 | 288,827 |
(C6×C24)⋊23C2 = C32×C8○D4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24):23C2 | 288,828 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C6×C24).1C2 = C3×Dic3⋊C8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24).1C2 | 288,248 |
(C6×C24).2C2 = C3×C2.Dic12 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24).2C2 | 288,250 |
(C6×C24).3C2 = C12.30Dic6 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).3C2 | 288,289 |
(C6×C24).4C2 = C6.4Dic12 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).4C2 | 288,291 |
(C6×C24).5C2 = C32×Q8⋊C4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).5C2 | 288,321 |
(C6×C24).6C2 = C32×C4⋊C8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).6C2 | 288,323 |
(C6×C24).7C2 = C24⋊1Dic3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).7C2 | 288,293 |
(C6×C24).8C2 = C2×C32⋊5Q16 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).8C2 | 288,762 |
(C6×C24).9C2 = C12.59D12 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24).9C2 | 288,294 |
(C6×C24).10C2 = C3×C24.C4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 48 | 2 | (C6xC24).10C2 | 288,253 |
(C6×C24).11C2 = C3×C24⋊1C4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24).11C2 | 288,252 |
(C6×C24).12C2 = C6×Dic12 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24).12C2 | 288,676 |
(C6×C24).13C2 = C24⋊2Dic3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).13C2 | 288,292 |
(C6×C24).14C2 = C3×C8⋊Dic3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24).14C2 | 288,251 |
(C6×C24).15C2 = C32×C2.D8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).15C2 | 288,325 |
(C6×C24).16C2 = Q16×C3×C6 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).16C2 | 288,831 |
(C6×C24).17C2 = C32×C8.C4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24).17C2 | 288,326 |
(C6×C24).18C2 = C6×C3⋊C16 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24).18C2 | 288,245 |
(C6×C24).19C2 = Dic3×C24 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24).19C2 | 288,247 |
(C6×C24).20C2 = C2×C24.S3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).20C2 | 288,286 |
(C6×C24).21C2 = C24.94D6 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24).21C2 | 288,287 |
(C6×C24).22C2 = C8×C3⋊Dic3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).22C2 | 288,288 |
(C6×C24).23C2 = C24⋊Dic3 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).23C2 | 288,290 |
(C6×C24).24C2 = C3×C12.C8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 48 | 2 | (C6xC24).24C2 | 288,246 |
(C6×C24).25C2 = C3×C24⋊C4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 96 | | (C6xC24).25C2 | 288,249 |
(C6×C24).26C2 = C32×C4.Q8 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).26C2 | 288,324 |
(C6×C24).27C2 = C32×C8⋊C4 | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 288 | | (C6xC24).27C2 | 288,315 |
(C6×C24).28C2 = C32×M5(2) | φ: C2/C1 → C2 ⊆ Aut C6×C24 | 144 | | (C6xC24).28C2 | 288,328 |