Extensions 1→N→G→Q→1 with N=S3xC8 and Q=S3

Direct product G=NxQ with N=S3xC8 and Q=S3
dρLabelID
S32xC8484S3^2xC8288,437

Semidirect products G=N:Q with N=S3xC8 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3xC8):1S3 = S3xD24φ: S3/C3C2 ⊆ Out S3xC8484+(S3xC8):1S3288,441
(S3xC8):2S3 = D24:7S3φ: S3/C3C2 ⊆ Out S3xC8964-(S3xC8):2S3288,455
(S3xC8):3S3 = D6.3D12φ: S3/C3C2 ⊆ Out S3xC8484+(S3xC8):3S3288,456
(S3xC8):4S3 = S3xC24:C2φ: S3/C3C2 ⊆ Out S3xC8484(S3xC8):4S3288,440
(S3xC8):5S3 = D6.1D12φ: S3/C3C2 ⊆ Out S3xC8484(S3xC8):5S3288,454
(S3xC8):6S3 = C24.63D6φ: S3/C3C2 ⊆ Out S3xC8484(S3xC8):6S3288,451
(S3xC8):7S3 = S3xC8:S3φ: S3/C3C2 ⊆ Out S3xC8484(S3xC8):7S3288,438
(S3xC8):8S3 = C24.64D6φ: S3/C3C2 ⊆ Out S3xC8484(S3xC8):8S3288,452

Non-split extensions G=N.Q with N=S3xC8 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3xC8).1S3 = S3xDic12φ: S3/C3C2 ⊆ Out S3xC8964-(S3xC8).1S3288,447
(S3xC8).2S3 = C24.61D6φ: S3/C3C2 ⊆ Out S3xC8964(S3xC8).2S3288,191
(S3xC8).3S3 = S3xC3:C16φ: trivial image964(S3xC8).3S3288,189

׿
x
:
Z
F
o
wr
Q
<