Extensions 1→N→G→Q→1 with N=C9×C4○D4 and Q=C2

Direct product G=N×Q with N=C9×C4○D4 and Q=C2
dρLabelID
C4○D4×C18144C4oD4xC18288,370

Semidirect products G=N:Q with N=C9×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×C4○D4)⋊1C2 = D4⋊D18φ: C2/C1C2 ⊆ Out C9×C4○D4724+(C9xC4oD4):1C2288,160
(C9×C4○D4)⋊2C2 = D4.9D18φ: C2/C1C2 ⊆ Out C9×C4○D41444(C9xC4oD4):2C2288,161
(C9×C4○D4)⋊3C2 = C4○D4×D9φ: C2/C1C2 ⊆ Out C9×C4○D4724(C9xC4oD4):3C2288,362
(C9×C4○D4)⋊4C2 = D48D18φ: C2/C1C2 ⊆ Out C9×C4○D4724+(C9xC4oD4):4C2288,363
(C9×C4○D4)⋊5C2 = D4.10D18φ: C2/C1C2 ⊆ Out C9×C4○D41444-(C9xC4oD4):5C2288,364
(C9×C4○D4)⋊6C2 = C9×C4○D8φ: C2/C1C2 ⊆ Out C9×C4○D41442(C9xC4oD4):6C2288,185
(C9×C4○D4)⋊7C2 = C9×C8⋊C22φ: C2/C1C2 ⊆ Out C9×C4○D4724(C9xC4oD4):7C2288,186
(C9×C4○D4)⋊8C2 = C9×2+ 1+4φ: C2/C1C2 ⊆ Out C9×C4○D4724(C9xC4oD4):8C2288,371
(C9×C4○D4)⋊9C2 = C9×2- 1+4φ: C2/C1C2 ⊆ Out C9×C4○D41444(C9xC4oD4):9C2288,372

Non-split extensions G=N.Q with N=C9×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×C4○D4).1C2 = Q83Dic9φ: C2/C1C2 ⊆ Out C9×C4○D4724(C9xC4oD4).1C2288,44
(C9×C4○D4).2C2 = D4.Dic9φ: C2/C1C2 ⊆ Out C9×C4○D41444(C9xC4oD4).2C2288,158
(C9×C4○D4).3C2 = D4.D18φ: C2/C1C2 ⊆ Out C9×C4○D41444-(C9xC4oD4).3C2288,159
(C9×C4○D4).4C2 = C9×C4≀C2φ: C2/C1C2 ⊆ Out C9×C4○D4722(C9xC4oD4).4C2288,54
(C9×C4○D4).5C2 = C9×C8.C22φ: C2/C1C2 ⊆ Out C9×C4○D41444(C9xC4oD4).5C2288,187
(C9×C4○D4).6C2 = C9×C8○D4φ: trivial image1442(C9xC4oD4).6C2288,181

׿
×
𝔽