Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C3⋊C8

Direct product G=N×Q with N=C2×C6 and Q=C3⋊C8
dρLabelID
C2×C6×C3⋊C896C2xC6xC3:C8288,691

Semidirect products G=N:Q with N=C2×C6 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1(C3⋊C8) = C3×A4⋊C8φ: C3⋊C8/C4S3 ⊆ Aut C2×C6723(C2xC6):1(C3:C8)288,398
(C2×C6)⋊2(C3⋊C8) = C12.12S4φ: C3⋊C8/C4S3 ⊆ Aut C2×C6726(C2xC6):2(C3:C8)288,402
(C2×C6)⋊3(C3⋊C8) = C3×C12.55D4φ: C3⋊C8/C12C2 ⊆ Aut C2×C648(C2xC6):3(C3:C8)288,264
(C2×C6)⋊4(C3⋊C8) = C627C8φ: C3⋊C8/C12C2 ⊆ Aut C2×C6144(C2xC6):4(C3:C8)288,305
(C2×C6)⋊5(C3⋊C8) = C22×C324C8φ: C3⋊C8/C12C2 ⊆ Aut C2×C6288(C2xC6):5(C3:C8)288,777

Non-split extensions G=N.Q with N=C2×C6 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
(C2×C6).(C3⋊C8) = C12.S4φ: C3⋊C8/C4S3 ⊆ Aut C2×C6726(C2xC6).(C3:C8)288,68
(C2×C6).2(C3⋊C8) = C3×C12.C8φ: C3⋊C8/C12C2 ⊆ Aut C2×C6482(C2xC6).2(C3:C8)288,246
(C2×C6).3(C3⋊C8) = C2×C9⋊C16φ: C3⋊C8/C12C2 ⊆ Aut C2×C6288(C2xC6).3(C3:C8)288,18
(C2×C6).4(C3⋊C8) = C36.C8φ: C3⋊C8/C12C2 ⊆ Aut C2×C61442(C2xC6).4(C3:C8)288,19
(C2×C6).5(C3⋊C8) = C36.55D4φ: C3⋊C8/C12C2 ⊆ Aut C2×C6144(C2xC6).5(C3:C8)288,37
(C2×C6).6(C3⋊C8) = C22×C9⋊C8φ: C3⋊C8/C12C2 ⊆ Aut C2×C6288(C2xC6).6(C3:C8)288,130
(C2×C6).7(C3⋊C8) = C2×C24.S3φ: C3⋊C8/C12C2 ⊆ Aut C2×C6288(C2xC6).7(C3:C8)288,286
(C2×C6).8(C3⋊C8) = C24.94D6φ: C3⋊C8/C12C2 ⊆ Aut C2×C6144(C2xC6).8(C3:C8)288,287
(C2×C6).9(C3⋊C8) = C6×C3⋊C16central extension (φ=1)96(C2xC6).9(C3:C8)288,245

׿
×
𝔽