Extensions 1→N→G→Q→1 with N=C18 and Q=C4⋊C4

Direct product G=N×Q with N=C18 and Q=C4⋊C4
dρLabelID
C4⋊C4×C18288C4:C4xC18288,166

Semidirect products G=N:Q with N=C18 and Q=C4⋊C4
extensionφ:Q→Aut NdρLabelID
C181(C4⋊C4) = C2×Dic9⋊C4φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18:1(C4:C4)288,133
C182(C4⋊C4) = C2×C4⋊Dic9φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18:2(C4:C4)288,135

Non-split extensions G=N.Q with N=C18 and Q=C4⋊C4
extensionφ:Q→Aut NdρLabelID
C18.1(C4⋊C4) = C36⋊C8φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18.1(C4:C4)288,11
C18.2(C4⋊C4) = C36.Q8φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18.2(C4:C4)288,14
C18.3(C4⋊C4) = C4.Dic18φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18.3(C4:C4)288,15
C18.4(C4⋊C4) = C72.C4φ: C4⋊C4/C2×C4C2 ⊆ Aut C181442C18.4(C4:C4)288,20
C18.5(C4⋊C4) = Dic9⋊C8φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18.5(C4:C4)288,22
C18.6(C4⋊C4) = C8⋊Dic9φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18.6(C4:C4)288,25
C18.7(C4⋊C4) = C721C4φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18.7(C4:C4)288,26
C18.8(C4⋊C4) = C36.53D4φ: C4⋊C4/C2×C4C2 ⊆ Aut C181444C18.8(C4:C4)288,29
C18.9(C4⋊C4) = C18.C42φ: C4⋊C4/C2×C4C2 ⊆ Aut C18288C18.9(C4:C4)288,38
C18.10(C4⋊C4) = C9×C2.C42central extension (φ=1)288C18.10(C4:C4)288,45
C18.11(C4⋊C4) = C9×C4⋊C8central extension (φ=1)288C18.11(C4:C4)288,55
C18.12(C4⋊C4) = C9×C4.Q8central extension (φ=1)288C18.12(C4:C4)288,56
C18.13(C4⋊C4) = C9×C2.D8central extension (φ=1)288C18.13(C4:C4)288,57
C18.14(C4⋊C4) = C9×C8.C4central extension (φ=1)1442C18.14(C4:C4)288,58

׿
×
𝔽