Extensions 1→N→G→Q→1 with N=Dic3 and Q=C4×S3

Direct product G=N×Q with N=Dic3 and Q=C4×S3
dρLabelID
C4×S3×Dic396C4xS3xDic3288,523

Semidirect products G=N:Q with N=Dic3 and Q=C4×S3
extensionφ:Q→Out NdρLabelID
Dic31(C4×S3) = C62.51C23φ: C4×S3/Dic3C2 ⊆ Out Dic348Dic3:1(C4xS3)288,529
Dic32(C4×S3) = C62.74C23φ: C4×S3/Dic3C2 ⊆ Out Dic348Dic3:2(C4xS3)288,552
Dic33(C4×S3) = Dic34D12φ: C4×S3/C12C2 ⊆ Out Dic348Dic3:3(C4xS3)288,528
Dic34(C4×S3) = C4×C3⋊D12φ: C4×S3/C12C2 ⊆ Out Dic348Dic3:4(C4xS3)288,551
Dic35(C4×S3) = S3×Dic3⋊C4φ: C4×S3/D6C2 ⊆ Out Dic396Dic3:5(C4xS3)288,524
Dic36(C4×S3) = C62.53C23φ: C4×S3/D6C2 ⊆ Out Dic348Dic3:6(C4xS3)288,531
Dic37(C4×S3) = C4×C6.D6φ: trivial image48Dic3:7(C4xS3)288,530

Non-split extensions G=N.Q with N=Dic3 and Q=C4×S3
extensionφ:Q→Out NdρLabelID
Dic3.1(C4×S3) = C24.64D6φ: C4×S3/Dic3C2 ⊆ Out Dic3484Dic3.1(C4xS3)288,452
Dic3.2(C4×S3) = C24.D6φ: C4×S3/Dic3C2 ⊆ Out Dic3484Dic3.2(C4xS3)288,453
Dic3.3(C4×S3) = Dic35Dic6φ: C4×S3/Dic3C2 ⊆ Out Dic396Dic3.3(C4xS3)288,485
Dic3.4(C4×S3) = C62.8C23φ: C4×S3/Dic3C2 ⊆ Out Dic396Dic3.4(C4xS3)288,486
Dic3.5(C4×S3) = C24.63D6φ: C4×S3/C12C2 ⊆ Out Dic3484Dic3.5(C4xS3)288,451
Dic3.6(C4×S3) = C4×C322Q8φ: C4×S3/C12C2 ⊆ Out Dic396Dic3.6(C4xS3)288,565
Dic3.7(C4×S3) = S3×C8⋊S3φ: C4×S3/D6C2 ⊆ Out Dic3484Dic3.7(C4xS3)288,438
Dic3.8(C4×S3) = C24⋊D6φ: C4×S3/D6C2 ⊆ Out Dic3484Dic3.8(C4xS3)288,439
Dic3.9(C4×S3) = C62.6C23φ: C4×S3/D6C2 ⊆ Out Dic348Dic3.9(C4xS3)288,484
Dic3.10(C4×S3) = C62.48C23φ: C4×S3/D6C2 ⊆ Out Dic396Dic3.10(C4xS3)288,526
Dic3.11(C4×S3) = S32×C8φ: trivial image484Dic3.11(C4xS3)288,437
Dic3.12(C4×S3) = C62.47C23φ: trivial image96Dic3.12(C4xS3)288,525

׿
×
𝔽