Extensions 1→N→G→Q→1 with N=C2 and Q=S3xC2xC12

Direct product G=NxQ with N=C2 and Q=S3xC2xC12
dρLabelID
S3xC22xC1296S3xC2^2xC12288,989


Non-split extensions G=N.Q with N=C2 and Q=S3xC2xC12
extensionφ:Q→Aut NdρLabelID
C2.1(S3xC2xC12) = S3xC4xC12central extension (φ=1)96C2.1(S3xC2xC12)288,642
C2.2(S3xC2xC12) = S3xC2xC24central extension (φ=1)96C2.2(S3xC2xC12)288,670
C2.3(S3xC2xC12) = Dic3xC2xC12central extension (φ=1)96C2.3(S3xC2xC12)288,693
C2.4(S3xC2xC12) = C12xDic6central stem extension (φ=1)96C2.4(S3xC2xC12)288,639
C2.5(S3xC2xC12) = C3xC42:2S3central stem extension (φ=1)96C2.5(S3xC2xC12)288,643
C2.6(S3xC2xC12) = C12xD12central stem extension (φ=1)96C2.6(S3xC2xC12)288,644
C2.7(S3xC2xC12) = C3xC23.16D6central stem extension (φ=1)48C2.7(S3xC2xC12)288,648
C2.8(S3xC2xC12) = C3xS3xC22:C4central stem extension (φ=1)48C2.8(S3xC2xC12)288,651
C2.9(S3xC2xC12) = C3xDic3:4D4central stem extension (φ=1)48C2.9(S3xC2xC12)288,652
C2.10(S3xC2xC12) = C3xDic6:C4central stem extension (φ=1)96C2.10(S3xC2xC12)288,658
C2.11(S3xC2xC12) = C3xS3xC4:C4central stem extension (φ=1)96C2.11(S3xC2xC12)288,662
C2.12(S3xC2xC12) = C3xC4:C4:7S3central stem extension (φ=1)96C2.12(S3xC2xC12)288,663
C2.13(S3xC2xC12) = C3xDic3:5D4central stem extension (φ=1)96C2.13(S3xC2xC12)288,664
C2.14(S3xC2xC12) = C6xC8:S3central stem extension (φ=1)96C2.14(S3xC2xC12)288,671
C2.15(S3xC2xC12) = C3xC8oD12central stem extension (φ=1)482C2.15(S3xC2xC12)288,672
C2.16(S3xC2xC12) = C3xS3xM4(2)central stem extension (φ=1)484C2.16(S3xC2xC12)288,677
C2.17(S3xC2xC12) = C3xD12.C4central stem extension (φ=1)484C2.17(S3xC2xC12)288,678
C2.18(S3xC2xC12) = C6xDic3:C4central stem extension (φ=1)96C2.18(S3xC2xC12)288,694
C2.19(S3xC2xC12) = C6xD6:C4central stem extension (φ=1)96C2.19(S3xC2xC12)288,698
C2.20(S3xC2xC12) = C12xC3:D4central stem extension (φ=1)48C2.20(S3xC2xC12)288,699

׿
x
:
Z
F
o
wr
Q
<