Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C2×C12

Direct product G=N×Q with N=C2 and Q=S3×C2×C12
dρLabelID
S3×C22×C1296S3xC2^2xC12288,989


Non-split extensions G=N.Q with N=C2 and Q=S3×C2×C12
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C2×C12) = S3×C4×C12central extension (φ=1)96C2.1(S3xC2xC12)288,642
C2.2(S3×C2×C12) = S3×C2×C24central extension (φ=1)96C2.2(S3xC2xC12)288,670
C2.3(S3×C2×C12) = Dic3×C2×C12central extension (φ=1)96C2.3(S3xC2xC12)288,693
C2.4(S3×C2×C12) = C12×Dic6central stem extension (φ=1)96C2.4(S3xC2xC12)288,639
C2.5(S3×C2×C12) = C3×C422S3central stem extension (φ=1)96C2.5(S3xC2xC12)288,643
C2.6(S3×C2×C12) = C12×D12central stem extension (φ=1)96C2.6(S3xC2xC12)288,644
C2.7(S3×C2×C12) = C3×C23.16D6central stem extension (φ=1)48C2.7(S3xC2xC12)288,648
C2.8(S3×C2×C12) = C3×S3×C22⋊C4central stem extension (φ=1)48C2.8(S3xC2xC12)288,651
C2.9(S3×C2×C12) = C3×Dic34D4central stem extension (φ=1)48C2.9(S3xC2xC12)288,652
C2.10(S3×C2×C12) = C3×Dic6⋊C4central stem extension (φ=1)96C2.10(S3xC2xC12)288,658
C2.11(S3×C2×C12) = C3×S3×C4⋊C4central stem extension (φ=1)96C2.11(S3xC2xC12)288,662
C2.12(S3×C2×C12) = C3×C4⋊C47S3central stem extension (φ=1)96C2.12(S3xC2xC12)288,663
C2.13(S3×C2×C12) = C3×Dic35D4central stem extension (φ=1)96C2.13(S3xC2xC12)288,664
C2.14(S3×C2×C12) = C6×C8⋊S3central stem extension (φ=1)96C2.14(S3xC2xC12)288,671
C2.15(S3×C2×C12) = C3×C8○D12central stem extension (φ=1)482C2.15(S3xC2xC12)288,672
C2.16(S3×C2×C12) = C3×S3×M4(2)central stem extension (φ=1)484C2.16(S3xC2xC12)288,677
C2.17(S3×C2×C12) = C3×D12.C4central stem extension (φ=1)484C2.17(S3xC2xC12)288,678
C2.18(S3×C2×C12) = C6×Dic3⋊C4central stem extension (φ=1)96C2.18(S3xC2xC12)288,694
C2.19(S3×C2×C12) = C6×D6⋊C4central stem extension (φ=1)96C2.19(S3xC2xC12)288,698
C2.20(S3×C2×C12) = C12×C3⋊D4central stem extension (φ=1)48C2.20(S3xC2xC12)288,699

׿
×
𝔽